Metamath Proof Explorer


Theorem opsqrlem5

Description: Lemma for opsqri . (Contributed by NM, 17-Aug-2006) (New usage is discouraged.)

Ref Expression
Hypotheses opsqrlem2.1 THrmOp
opsqrlem2.2 S=xHrmOp,yHrmOpx+op12·opT-opxx
opsqrlem2.3 F=seq1S×0hop
Assertion opsqrlem5 NFN+1=FN+op12·opT-opFNFN

Proof

Step Hyp Ref Expression
1 opsqrlem2.1 THrmOp
2 opsqrlem2.2 S=xHrmOp,yHrmOpx+op12·opT-opxx
3 opsqrlem2.3 F=seq1S×0hop
4 elnnuz NN1
5 seqp1 N1seq1S×0hopN+1=seq1S×0hopNS×0hopN+1
6 4 5 sylbi Nseq1S×0hopN+1=seq1S×0hopNS×0hopN+1
7 3 fveq1i FN+1=seq1S×0hopN+1
8 3 fveq1i FN=seq1S×0hopN
9 8 oveq1i FNS×0hopN+1=seq1S×0hopNS×0hopN+1
10 6 7 9 3eqtr4g NFN+1=FNS×0hopN+1
11 1 2 3 opsqrlem4 F:HrmOp
12 11 ffvelcdmi NFNHrmOp
13 peano2nn NN+1
14 0hmop 0hopHrmOp
15 14 elexi 0hopV
16 15 fvconst2 N+1×0hopN+1=0hop
17 13 16 syl N×0hopN+1=0hop
18 17 14 eqeltrdi N×0hopN+1HrmOp
19 1 2 3 opsqrlem3 FNHrmOp×0hopN+1HrmOpFNS×0hopN+1=FN+op12·opT-opFNFN
20 12 18 19 syl2anc NFNS×0hopN+1=FN+op12·opT-opFNFN
21 10 20 eqtrd NFN+1=FN+op12·opT-opFNFN