Metamath Proof Explorer


Theorem ordpipq

Description: Ordering of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion ordpipq AB<𝑝𝑸CDA𝑵D<𝑵C𝑵B

Proof

Step Hyp Ref Expression
1 opex ABV
2 opex CDV
3 eleq1 x=ABx𝑵×𝑵AB𝑵×𝑵
4 3 anbi1d x=ABx𝑵×𝑵y𝑵×𝑵AB𝑵×𝑵y𝑵×𝑵
5 4 anbi1d x=ABx𝑵×𝑵y𝑵×𝑵1stx𝑵2ndy<𝑵1sty𝑵2ndxAB𝑵×𝑵y𝑵×𝑵1stx𝑵2ndy<𝑵1sty𝑵2ndx
6 fveq2 x=AB1stx=1stAB
7 opelxp AB𝑵×𝑵A𝑵B𝑵
8 op1stg A𝑵B𝑵1stAB=A
9 7 8 sylbi AB𝑵×𝑵1stAB=A
10 9 adantr AB𝑵×𝑵y𝑵×𝑵1stAB=A
11 6 10 sylan9eq x=ABAB𝑵×𝑵y𝑵×𝑵1stx=A
12 11 oveq1d x=ABAB𝑵×𝑵y𝑵×𝑵1stx𝑵2ndy=A𝑵2ndy
13 fveq2 x=AB2ndx=2ndAB
14 op2ndg A𝑵B𝑵2ndAB=B
15 7 14 sylbi AB𝑵×𝑵2ndAB=B
16 15 adantr AB𝑵×𝑵y𝑵×𝑵2ndAB=B
17 13 16 sylan9eq x=ABAB𝑵×𝑵y𝑵×𝑵2ndx=B
18 17 oveq2d x=ABAB𝑵×𝑵y𝑵×𝑵1sty𝑵2ndx=1sty𝑵B
19 12 18 breq12d x=ABAB𝑵×𝑵y𝑵×𝑵1stx𝑵2ndy<𝑵1sty𝑵2ndxA𝑵2ndy<𝑵1sty𝑵B
20 19 pm5.32da x=ABAB𝑵×𝑵y𝑵×𝑵1stx𝑵2ndy<𝑵1sty𝑵2ndxAB𝑵×𝑵y𝑵×𝑵A𝑵2ndy<𝑵1sty𝑵B
21 5 20 bitrd x=ABx𝑵×𝑵y𝑵×𝑵1stx𝑵2ndy<𝑵1sty𝑵2ndxAB𝑵×𝑵y𝑵×𝑵A𝑵2ndy<𝑵1sty𝑵B
22 eleq1 y=CDy𝑵×𝑵CD𝑵×𝑵
23 22 anbi2d y=CDAB𝑵×𝑵y𝑵×𝑵AB𝑵×𝑵CD𝑵×𝑵
24 23 anbi1d y=CDAB𝑵×𝑵y𝑵×𝑵A𝑵2ndy<𝑵1sty𝑵BAB𝑵×𝑵CD𝑵×𝑵A𝑵2ndy<𝑵1sty𝑵B
25 fveq2 y=CD2ndy=2ndCD
26 opelxp CD𝑵×𝑵C𝑵D𝑵
27 op2ndg C𝑵D𝑵2ndCD=D
28 26 27 sylbi CD𝑵×𝑵2ndCD=D
29 28 adantl AB𝑵×𝑵CD𝑵×𝑵2ndCD=D
30 25 29 sylan9eq y=CDAB𝑵×𝑵CD𝑵×𝑵2ndy=D
31 30 oveq2d y=CDAB𝑵×𝑵CD𝑵×𝑵A𝑵2ndy=A𝑵D
32 fveq2 y=CD1sty=1stCD
33 op1stg C𝑵D𝑵1stCD=C
34 26 33 sylbi CD𝑵×𝑵1stCD=C
35 34 adantl AB𝑵×𝑵CD𝑵×𝑵1stCD=C
36 32 35 sylan9eq y=CDAB𝑵×𝑵CD𝑵×𝑵1sty=C
37 36 oveq1d y=CDAB𝑵×𝑵CD𝑵×𝑵1sty𝑵B=C𝑵B
38 31 37 breq12d y=CDAB𝑵×𝑵CD𝑵×𝑵A𝑵2ndy<𝑵1sty𝑵BA𝑵D<𝑵C𝑵B
39 38 pm5.32da y=CDAB𝑵×𝑵CD𝑵×𝑵A𝑵2ndy<𝑵1sty𝑵BAB𝑵×𝑵CD𝑵×𝑵A𝑵D<𝑵C𝑵B
40 24 39 bitrd y=CDAB𝑵×𝑵y𝑵×𝑵A𝑵2ndy<𝑵1sty𝑵BAB𝑵×𝑵CD𝑵×𝑵A𝑵D<𝑵C𝑵B
41 df-ltpq <𝑝𝑸=xy|x𝑵×𝑵y𝑵×𝑵1stx𝑵2ndy<𝑵1sty𝑵2ndx
42 1 2 21 40 41 brab AB<𝑝𝑸CDAB𝑵×𝑵CD𝑵×𝑵A𝑵D<𝑵C𝑵B
43 simpr AB𝑵×𝑵CD𝑵×𝑵A𝑵D<𝑵C𝑵BA𝑵D<𝑵C𝑵B
44 ltrelpi <𝑵𝑵×𝑵
45 44 brel A𝑵D<𝑵C𝑵BA𝑵D𝑵C𝑵B𝑵
46 dmmulpi dom𝑵=𝑵×𝑵
47 0npi ¬𝑵
48 46 47 ndmovrcl A𝑵D𝑵A𝑵D𝑵
49 46 47 ndmovrcl C𝑵B𝑵C𝑵B𝑵
50 48 49 anim12i A𝑵D𝑵C𝑵B𝑵A𝑵D𝑵C𝑵B𝑵
51 opelxpi A𝑵B𝑵AB𝑵×𝑵
52 51 ad2ant2rl A𝑵D𝑵C𝑵B𝑵AB𝑵×𝑵
53 simprl A𝑵D𝑵C𝑵B𝑵C𝑵
54 simplr A𝑵D𝑵C𝑵B𝑵D𝑵
55 53 54 opelxpd A𝑵D𝑵C𝑵B𝑵CD𝑵×𝑵
56 52 55 jca A𝑵D𝑵C𝑵B𝑵AB𝑵×𝑵CD𝑵×𝑵
57 45 50 56 3syl A𝑵D<𝑵C𝑵BAB𝑵×𝑵CD𝑵×𝑵
58 57 ancri A𝑵D<𝑵C𝑵BAB𝑵×𝑵CD𝑵×𝑵A𝑵D<𝑵C𝑵B
59 43 58 impbii AB𝑵×𝑵CD𝑵×𝑵A𝑵D<𝑵C𝑵BA𝑵D<𝑵C𝑵B
60 42 59 bitri AB<𝑝𝑸CDA𝑵D<𝑵C𝑵B