Metamath Proof Explorer


Theorem osumcllem9N

Description: Lemma for osumclN . (Contributed by NM, 24-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses osumcllem.l ˙=K
osumcllem.j ˙=joinK
osumcllem.a A=AtomsK
osumcllem.p +˙=+𝑃K
osumcllem.o ˙=𝑃K
osumcllem.c C=PSubClK
osumcllem.m M=X+˙p
osumcllem.u U=˙˙X+˙Y
Assertion osumcllem9N KHLXCYCX˙YXpU¬pX+˙YM=X

Proof

Step Hyp Ref Expression
1 osumcllem.l ˙=K
2 osumcllem.j ˙=joinK
3 osumcllem.a A=AtomsK
4 osumcllem.p +˙=+𝑃K
5 osumcllem.o ˙=𝑃K
6 osumcllem.c C=PSubClK
7 osumcllem.m M=X+˙p
8 osumcllem.u U=˙˙X+˙Y
9 inass ˙XUM=˙XUM
10 simp11 KHLXCYCX˙YXpU¬pX+˙YKHL
11 simp13 KHLXCYCX˙YXpU¬pX+˙YYC
12 simp21 KHLXCYCX˙YXpU¬pX+˙YX˙Y
13 1 2 3 4 5 6 7 8 osumcllem3N KHLYCX˙Y˙XU=Y
14 10 11 12 13 syl3anc KHLXCYCX˙YXpU¬pX+˙Y˙XU=Y
15 14 ineq1d KHLXCYCX˙YXpU¬pX+˙Y˙XUM=YM
16 9 15 eqtr3id KHLXCYCX˙YXpU¬pX+˙Y˙XUM=YM
17 simp12 KHLXCYCX˙YXpU¬pX+˙YXC
18 3 6 psubclssatN KHLXCXA
19 10 17 18 syl2anc KHLXCYCX˙YXpU¬pX+˙YXA
20 3 6 psubclssatN KHLYCYA
21 10 11 20 syl2anc KHLXCYCX˙YXpU¬pX+˙YYA
22 simp22 KHLXCYCX˙YXpU¬pX+˙YX
23 3 4 paddssat KHLXAYAX+˙YA
24 10 19 21 23 syl3anc KHLXCYCX˙YXpU¬pX+˙YX+˙YA
25 3 5 polssatN KHLX+˙YA˙X+˙YA
26 10 24 25 syl2anc KHLXCYCX˙YXpU¬pX+˙Y˙X+˙YA
27 3 5 polssatN KHL˙X+˙YA˙˙X+˙YA
28 10 26 27 syl2anc KHLXCYCX˙YXpU¬pX+˙Y˙˙X+˙YA
29 8 28 eqsstrid KHLXCYCX˙YXpU¬pX+˙YUA
30 simp23 KHLXCYCX˙YXpU¬pX+˙YpU
31 29 30 sseldd KHLXCYCX˙YXpU¬pX+˙YpA
32 simp3 KHLXCYCX˙YXpU¬pX+˙Y¬pX+˙Y
33 1 2 3 4 5 6 7 8 osumcllem8N KHLXAYAX˙YXpA¬pX+˙YYM=
34 10 19 21 12 22 31 32 33 syl331anc KHLXCYCX˙YXpU¬pX+˙YYM=
35 16 34 eqtrd KHLXCYCX˙YXpU¬pX+˙Y˙XUM=
36 35 fveq2d KHLXCYCX˙YXpU¬pX+˙Y˙˙XUM=˙
37 3 5 pol0N KHL˙=A
38 10 37 syl KHLXCYCX˙YXpU¬pX+˙Y˙=A
39 36 38 eqtrd KHLXCYCX˙YXpU¬pX+˙Y˙˙XUM=A
40 1 2 3 4 5 6 7 8 osumcllem1N KHLXAYApUUM=M
41 10 19 21 30 40 syl31anc KHLXCYCX˙YXpU¬pX+˙YUM=M
42 39 41 ineq12d KHLXCYCX˙YXpU¬pX+˙Y˙˙XUMUM=AM
43 3 5 6 polsubclN KHL˙X+˙YA˙˙X+˙YC
44 10 26 43 syl2anc KHLXCYCX˙YXpU¬pX+˙Y˙˙X+˙YC
45 8 44 eqeltrid KHLXCYCX˙YXpU¬pX+˙YUC
46 3 4 6 paddatclN KHLXCpAX+˙pC
47 10 17 31 46 syl3anc KHLXCYCX˙YXpU¬pX+˙YX+˙pC
48 7 47 eqeltrid KHLXCYCX˙YXpU¬pX+˙YMC
49 6 psubclinN KHLUCMCUMC
50 10 45 48 49 syl3anc KHLXCYCX˙YXpU¬pX+˙YUMC
51 1 2 3 4 5 6 7 8 osumcllem2N KHLXAYApUXUM
52 10 19 21 30 51 syl31anc KHLXCYCX˙YXpU¬pX+˙YXUM
53 6 5 poml6N KHLXCUMCXUM˙˙XUMUM=X
54 10 17 50 52 53 syl31anc KHLXCYCX˙YXpU¬pX+˙Y˙˙XUMUM=X
55 31 snssd KHLXCYCX˙YXpU¬pX+˙YpA
56 3 4 paddssat KHLXApAX+˙pA
57 10 19 55 56 syl3anc KHLXCYCX˙YXpU¬pX+˙YX+˙pA
58 7 57 eqsstrid KHLXCYCX˙YXpU¬pX+˙YMA
59 sseqin2 MAAM=M
60 58 59 sylib KHLXCYCX˙YXpU¬pX+˙YAM=M
61 42 54 60 3eqtr3rd KHLXCYCX˙YXpU¬pX+˙YM=X