Metamath Proof Explorer


Theorem ovg

Description: The value of an operation class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses ovg.1 x=Aφψ
ovg.2 y=Bψχ
ovg.3 z=Cχθ
ovg.4 τxRyS∃!zφ
ovg.5 F=xyz|xRySφ
Assertion ovg τARBSCDAFB=Cθ

Proof

Step Hyp Ref Expression
1 ovg.1 x=Aφψ
2 ovg.2 y=Bψχ
3 ovg.3 z=Cχθ
4 ovg.4 τxRyS∃!zφ
5 ovg.5 F=xyz|xRySφ
6 df-ov AFB=FAB
7 5 fveq1i FAB=xyz|xRySφAB
8 6 7 eqtri AFB=xyz|xRySφAB
9 8 eqeq1i AFB=Cxyz|xRySφAB=C
10 eqeq2 c=Cxyz|xRySφAB=cxyz|xRySφAB=C
11 opeq2 c=CABc=ABC
12 11 eleq1d c=CABcxyz|xRySφABCxyz|xRySφ
13 10 12 bibi12d c=Cxyz|xRySφAB=cABcxyz|xRySφxyz|xRySφAB=CABCxyz|xRySφ
14 13 imbi2d c=CτARBSxyz|xRySφAB=cABcxyz|xRySφτARBSxyz|xRySφAB=CABCxyz|xRySφ
15 4 ex τxRyS∃!zφ
16 15 alrimivv τxyxRyS∃!zφ
17 fnoprabg xyxRyS∃!zφxyz|xRySφFnxy|xRyS
18 16 17 syl τxyz|xRySφFnxy|xRyS
19 eleq1 x=AxRAR
20 19 anbi1d x=AxRySARyS
21 eleq1 y=BySBS
22 21 anbi2d y=BARySARBS
23 20 22 opelopabg ARBSABxy|xRySARBS
24 23 ibir ARBSABxy|xRyS
25 fnopfvb xyz|xRySφFnxy|xRySABxy|xRySxyz|xRySφAB=cABcxyz|xRySφ
26 18 24 25 syl2an τARBSxyz|xRySφAB=cABcxyz|xRySφ
27 14 26 vtoclg CDτARBSxyz|xRySφAB=CABCxyz|xRySφ
28 27 com12 τARBSCDxyz|xRySφAB=CABCxyz|xRySφ
29 28 exp32 τARBSCDxyz|xRySφAB=CABCxyz|xRySφ
30 29 3imp2 τARBSCDxyz|xRySφAB=CABCxyz|xRySφ
31 20 1 anbi12d x=AxRySφARySψ
32 22 2 anbi12d y=BARySψARBSχ
33 3 anbi2d z=CARBSχARBSθ
34 31 32 33 eloprabg ARBSCDABCxyz|xRySφARBSθ
35 34 adantl τARBSCDABCxyz|xRySφARBSθ
36 30 35 bitrd τARBSCDxyz|xRySφAB=CARBSθ
37 9 36 bitrid τARBSCDAFB=CARBSθ
38 biidd ARBSARBSθARBSθ
39 38 bianabs ARBSARBSθθ
40 39 3adant3 ARBSCDARBSθθ
41 40 adantl τARBSCDARBSθθ
42 37 41 bitrd τARBSCDAFB=Cθ