Description: Lemma for pcfac . (Contributed by Mario Carneiro, 20-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | pcfaclem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ge0 | |
|
2 | 1 | 3ad2ant1 | |
3 | nn0re | |
|
4 | 3 | 3ad2ant1 | |
5 | prmnn | |
|
6 | 5 | 3ad2ant3 | |
7 | eluznn0 | |
|
8 | 7 | 3adant3 | |
9 | 6 8 | nnexpcld | |
10 | 9 | nnred | |
11 | 9 | nngt0d | |
12 | ge0div | |
|
13 | 4 10 11 12 | syl3anc | |
14 | 2 13 | mpbid | |
15 | 8 | nn0red | |
16 | eluzle | |
|
17 | 16 | 3ad2ant2 | |
18 | prmuz2 | |
|
19 | 18 | 3ad2ant3 | |
20 | bernneq3 | |
|
21 | 19 8 20 | syl2anc | |
22 | 4 15 10 17 21 | lelttrd | |
23 | 9 | nncnd | |
24 | 23 | mulridd | |
25 | 22 24 | breqtrrd | |
26 | 1red | |
|
27 | ltdivmul | |
|
28 | 4 26 10 11 27 | syl112anc | |
29 | 25 28 | mpbird | |
30 | 0p1e1 | |
|
31 | 29 30 | breqtrrdi | |
32 | 4 9 | nndivred | |
33 | 0z | |
|
34 | flbi | |
|
35 | 32 33 34 | sylancl | |
36 | 14 31 35 | mpbir2and | |