Metamath Proof Explorer


Theorem pcfaclem

Description: Lemma for pcfac . (Contributed by Mario Carneiro, 20-May-2014)

Ref Expression
Assertion pcfaclem N0MNPNPM=0

Proof

Step Hyp Ref Expression
1 nn0ge0 N00N
2 1 3ad2ant1 N0MNP0N
3 nn0re N0N
4 3 3ad2ant1 N0MNPN
5 prmnn PP
6 5 3ad2ant3 N0MNPP
7 eluznn0 N0MNM0
8 7 3adant3 N0MNPM0
9 6 8 nnexpcld N0MNPPM
10 9 nnred N0MNPPM
11 9 nngt0d N0MNP0<PM
12 ge0div NPM0<PM0N0NPM
13 4 10 11 12 syl3anc N0MNP0N0NPM
14 2 13 mpbid N0MNP0NPM
15 8 nn0red N0MNPM
16 eluzle MNNM
17 16 3ad2ant2 N0MNPNM
18 prmuz2 PP2
19 18 3ad2ant3 N0MNPP2
20 bernneq3 P2M0M<PM
21 19 8 20 syl2anc N0MNPM<PM
22 4 15 10 17 21 lelttrd N0MNPN<PM
23 9 nncnd N0MNPPM
24 23 mulridd N0MNPPM1=PM
25 22 24 breqtrrd N0MNPN<PM1
26 1red N0MNP1
27 ltdivmul N1PM0<PMNPM<1N<PM1
28 4 26 10 11 27 syl112anc N0MNPNPM<1N<PM1
29 25 28 mpbird N0MNPNPM<1
30 0p1e1 0+1=1
31 29 30 breqtrrdi N0MNPNPM<0+1
32 4 9 nndivred N0MNPNPM
33 0z 0
34 flbi NPM0NPM=00NPMNPM<0+1
35 32 33 34 sylancl N0MNPNPM=00NPMNPM<0+1
36 14 31 35 mpbir2and N0MNPNPM=0