Metamath Proof Explorer


Theorem pcid

Description: The prime count of a prime power. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Assertion pcid PAPpCntPA=A

Proof

Step Hyp Ref Expression
1 elznn0nn AA0AA
2 pcidlem PA0PpCntPA=A
3 prmnn PP
4 3 adantr PAAP
5 4 nncnd PAAP
6 simprl PAAA
7 6 recnd PAAA
8 nnnn0 AA0
9 8 ad2antll PAAA0
10 expneg2 PAA0PA=1PA
11 5 7 9 10 syl3anc PAAPA=1PA
12 11 oveq2d PAAPpCntPA=PpCnt1PA
13 simpl PAAP
14 1zzd PAA1
15 ax-1ne0 10
16 15 a1i PAA10
17 4 9 nnexpcld PAAPA
18 pcdiv P110PAPpCnt1PA=PpCnt1PpCntPA
19 13 14 16 17 18 syl121anc PAAPpCnt1PA=PpCnt1PpCntPA
20 pc1 PPpCnt1=0
21 20 adantr PAAPpCnt1=0
22 pcidlem PA0PpCntPA=A
23 9 22 syldan PAAPpCntPA=A
24 21 23 oveq12d PAAPpCnt1PpCntPA=0A
25 df-neg A=0A
26 7 negnegd PAAA=A
27 25 26 eqtr3id PAA0A=A
28 24 27 eqtrd PAAPpCnt1PpCntPA=A
29 19 28 eqtrd PAAPpCnt1PA=A
30 12 29 eqtrd PAAPpCntPA=A
31 2 30 jaodan PA0AAPpCntPA=A
32 1 31 sylan2b PAPpCntPA=A