Metamath Proof Explorer


Theorem pfxccatin12lem2a

Description: Lemma for pfxccatin12lem2 . (Contributed by AV, 30-Mar-2018) (Revised by AV, 27-May-2018)

Ref Expression
Assertion pfxccatin12lem2a M0LNLXK0..^NM¬K0..^LMK+ML..^X

Proof

Step Hyp Ref Expression
1 elfz2 M0L0LM0MML
2 zsubcl LMLM
3 2 3adant1 0LMLM
4 3 adantr 0LM0MMLLM
5 1 4 sylbi M0LLM
6 5 adantr M0LNLXLM
7 elfzonelfzo LMK0..^NM¬K0..^LMKLM..^NM
8 6 7 syl M0LNLXK0..^NM¬K0..^LMKLM..^NM
9 elfzoelz KLM..^NMK
10 elfzelz NLXN
11 simpl LML
12 simpl NKN
13 11 12 anim12i LMNKLN
14 simpr LMM
15 simpr NKK
16 14 15 anim12ci LMNKKM
17 13 16 jca LMNKLNKM
18 17 exp32 LMNKLNKM
19 10 18 syl5 LMNLXKLNKM
20 19 3adant1 0LMNLXKLNKM
21 20 adantr 0LM0MMLNLXKLNKM
22 1 21 sylbi M0LNLXKLNKM
23 22 imp M0LNLXKLNKM
24 23 impcom KM0LNLXLNKM
25 elfzomelpfzo LNKMKLM..^NMK+ML..^N
26 24 25 syl KM0LNLXKLM..^NMK+ML..^N
27 elfz2 NLXLXNLNNX
28 simpl3 LXNLNNXN
29 simpl2 LXNLNNXX
30 simpr LNNXNX
31 30 adantl LXNLNNXNX
32 28 29 31 3jca LXNLNNXNXNX
33 27 32 sylbi NLXNXNX
34 33 adantl M0LNLXNXNX
35 34 adantl KM0LNLXNXNX
36 eluz2 XNNXNX
37 35 36 sylibr KM0LNLXXN
38 fzoss2 XNL..^NL..^X
39 37 38 syl KM0LNLXL..^NL..^X
40 39 sseld KM0LNLXK+ML..^NK+ML..^X
41 26 40 sylbid KM0LNLXKLM..^NMK+ML..^X
42 41 ex KM0LNLXKLM..^NMK+ML..^X
43 42 com23 KKLM..^NMM0LNLXK+ML..^X
44 9 43 mpcom KLM..^NMM0LNLXK+ML..^X
45 44 com12 M0LNLXKLM..^NMK+ML..^X
46 8 45 syld M0LNLXK0..^NM¬K0..^LMK+ML..^X