Description: Lemma for pfxccatin12lem2 . (Contributed by AV, 30-Mar-2018) (Revised by AV, 27-May-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | pfxccatin12lem2a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2 | |
|
2 | zsubcl | |
|
3 | 2 | 3adant1 | |
4 | 3 | adantr | |
5 | 1 4 | sylbi | |
6 | 5 | adantr | |
7 | elfzonelfzo | |
|
8 | 6 7 | syl | |
9 | elfzoelz | |
|
10 | elfzelz | |
|
11 | simpl | |
|
12 | simpl | |
|
13 | 11 12 | anim12i | |
14 | simpr | |
|
15 | simpr | |
|
16 | 14 15 | anim12ci | |
17 | 13 16 | jca | |
18 | 17 | exp32 | |
19 | 10 18 | syl5 | |
20 | 19 | 3adant1 | |
21 | 20 | adantr | |
22 | 1 21 | sylbi | |
23 | 22 | imp | |
24 | 23 | impcom | |
25 | elfzomelpfzo | |
|
26 | 24 25 | syl | |
27 | elfz2 | |
|
28 | simpl3 | |
|
29 | simpl2 | |
|
30 | simpr | |
|
31 | 30 | adantl | |
32 | 28 29 31 | 3jca | |
33 | 27 32 | sylbi | |
34 | 33 | adantl | |
35 | 34 | adantl | |
36 | eluz2 | |
|
37 | 35 36 | sylibr | |
38 | fzoss2 | |
|
39 | 37 38 | syl | |
40 | 39 | sseld | |
41 | 26 40 | sylbid | |
42 | 41 | ex | |
43 | 42 | com23 | |
44 | 9 43 | mpcom | |
45 | 44 | com12 | |
46 | 8 45 | syld | |