Metamath Proof Explorer


Theorem pgnbgreunbgrlem3

Description: Lemma 3 for pgnbgreunbgr . (Contributed by AV, 18-Nov-2025)

Ref Expression
Hypotheses pgnbgreunbgr.g No typesetting found for |- G = ( 5 gPetersenGr 2 ) with typecode |-
pgnbgreunbgr.v V = Vtx G
pgnbgreunbgr.e E = Edg G
pgnbgreunbgr.n N = G NeighbVtx X
Assertion pgnbgreunbgrlem3 K N L N K L b 0 ..^ 5 K 0 b E 0 b L E X = 0 b

Proof

Step Hyp Ref Expression
1 pgnbgreunbgr.g Could not format G = ( 5 gPetersenGr 2 ) : No typesetting found for |- G = ( 5 gPetersenGr 2 ) with typecode |-
2 pgnbgreunbgr.v V = Vtx G
3 pgnbgreunbgr.e E = Edg G
4 pgnbgreunbgr.n N = G NeighbVtx X
5 2 nbgrcl K G NeighbVtx X X V
6 5 4 eleq2s K N X V
7 6 3ad2ant1 K N L N K L X V
8 5eluz3 5 3
9 pglem 2 1 ..^ 5 2
10 eqid 0 ..^ 5 = 0 ..^ 5
11 eqid 1 ..^ 5 2 = 1 ..^ 5 2
12 10 11 1 2 gpgvtxel 5 3 2 1 ..^ 5 2 X V x 0 1 y 0 ..^ 5 X = x y
13 8 9 12 mp2an X V x 0 1 y 0 ..^ 5 X = x y
14 13 biimpi X V x 0 1 y 0 ..^ 5 X = x y
15 14 adantl K N L N K L b 0 ..^ 5 X V x 0 1 y 0 ..^ 5 X = x y
16 vex x V
17 16 elpr x 0 1 x = 0 x = 1
18 opeq1 x = 0 x y = 0 y
19 18 eqeq2d x = 0 X = x y X = 0 y
20 19 adantr x = 0 K N L N K L b 0 ..^ 5 X V y 0 ..^ 5 X = x y X = 0 y
21 8 9 pm3.2i 5 3 2 1 ..^ 5 2
22 2 eleq2i X V X Vtx G
23 22 biimpi X V X Vtx G
24 c0ex 0 V
25 vex y V
26 24 25 op1std X = 0 y 1 st X = 0
27 23 26 anim12i X V X = 0 y X Vtx G 1 st X = 0
28 eqid Vtx G = Vtx G
29 11 1 28 4 gpgnbgrvtx0 5 3 2 1 ..^ 5 2 X Vtx G 1 st X = 0 N = 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5
30 21 27 29 sylancr X V X = 0 y N = 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5
31 eleq2 N = 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 K N K 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5
32 eleq2 N = 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 L N L 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5
33 31 32 anbi12d N = 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 K N L N K 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 L 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5
34 33 adantl X V X = 0 y N = 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 K N L N K 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 L 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5
35 eltpi K 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 K = 0 2 nd X + 1 mod 5 K = 1 2 nd X K = 0 2 nd X 1 mod 5
36 eltpi L 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 L = 0 2 nd X + 1 mod 5 L = 1 2 nd X L = 0 2 nd X 1 mod 5
37 1 2 3 4 pgnbgreunbgrlem1 L = 0 2 nd X + 1 mod 5 L = 1 2 nd X L = 0 2 nd X 1 mod 5 K = 0 2 nd X + 1 mod 5 K = 1 2 nd X K = 0 2 nd X 1 mod 5 X V X = 0 y K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
38 36 37 syl L 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 K = 0 2 nd X + 1 mod 5 K = 1 2 nd X K = 0 2 nd X 1 mod 5 X V X = 0 y K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
39 35 38 mpan9 K 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 L 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 X V X = 0 y K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
40 39 com12 X V X = 0 y K 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 L 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
41 40 adantr X V X = 0 y N = 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 K 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 L 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
42 34 41 sylbid X V X = 0 y N = 0 2 nd X + 1 mod 5 1 2 nd X 0 2 nd X 1 mod 5 K N L N K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
43 30 42 mpdan X V X = 0 y K N L N K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
44 43 com12 K N L N X V X = 0 y K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
45 44 expd K N L N X V X = 0 y K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
46 45 com23 K N L N X = 0 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
47 46 com24 K N L N K L b 0 ..^ 5 y 0 ..^ 5 X V X = 0 y K 0 b E 0 b L E X = 0 b
48 47 expd K N L N K L b 0 ..^ 5 y 0 ..^ 5 X V X = 0 y K 0 b E 0 b L E X = 0 b
49 48 3impia K N L N K L b 0 ..^ 5 y 0 ..^ 5 X V X = 0 y K 0 b E 0 b L E X = 0 b
50 49 expdimp K N L N K L b 0 ..^ 5 y 0 ..^ 5 X V X = 0 y K 0 b E 0 b L E X = 0 b
51 50 com23 K N L N K L b 0 ..^ 5 X V y 0 ..^ 5 X = 0 y K 0 b E 0 b L E X = 0 b
52 51 imp31 K N L N K L b 0 ..^ 5 X V y 0 ..^ 5 X = 0 y K 0 b E 0 b L E X = 0 b
53 52 adantl x = 0 K N L N K L b 0 ..^ 5 X V y 0 ..^ 5 X = 0 y K 0 b E 0 b L E X = 0 b
54 20 53 sylbid x = 0 K N L N K L b 0 ..^ 5 X V y 0 ..^ 5 X = x y K 0 b E 0 b L E X = 0 b
55 54 ex x = 0 K N L N K L b 0 ..^ 5 X V y 0 ..^ 5 X = x y K 0 b E 0 b L E X = 0 b
56 1ex 1 V
57 56 25 op1std X = 1 y 1 st X = 1
58 57 anim1ci X = 1 y X V X V 1 st X = 1
59 11 1 2 4 gpgnbgrvtx1 5 3 2 1 ..^ 5 2 X V 1 st X = 1 N = 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5
60 21 58 59 sylancr X = 1 y X V N = 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5
61 eleq2 N = 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 K N K 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5
62 eleq2 N = 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 L N L 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5
63 61 62 anbi12d N = 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 K N L N K 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 L 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5
64 63 adantl X = 1 y X V N = 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 K N L N K 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 L 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5
65 eltpi K 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 K = 1 2 nd X + 2 mod 5 K = 0 2 nd X K = 1 2 nd X 2 mod 5
66 eltpi L 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 L = 1 2 nd X + 2 mod 5 L = 0 2 nd X L = 1 2 nd X 2 mod 5
67 1 2 3 4 pgnbgreunbgrlem2 L = 1 2 nd X + 2 mod 5 L = 0 2 nd X L = 1 2 nd X 2 mod 5 K = 1 2 nd X + 2 mod 5 K = 0 2 nd X K = 1 2 nd X 2 mod 5 X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
68 66 67 syl L 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 K = 1 2 nd X + 2 mod 5 K = 0 2 nd X K = 1 2 nd X 2 mod 5 X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
69 65 68 mpan9 K 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 L 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
70 69 com12 X = 1 y X V K 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 L 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
71 70 adantr X = 1 y X V N = 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 K 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 L 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
72 64 71 sylbid X = 1 y X V N = 1 2 nd X + 2 mod 5 0 2 nd X 1 2 nd X 2 mod 5 K N L N K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
73 60 72 mpdan X = 1 y X V K N L N K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
74 73 com12 K N L N X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
75 74 expd K N L N X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
76 75 com24 K N L N K L b 0 ..^ 5 y 0 ..^ 5 X V X = 1 y K 0 b E 0 b L E X = 0 b
77 76 expd K N L N K L b 0 ..^ 5 y 0 ..^ 5 X V X = 1 y K 0 b E 0 b L E X = 0 b
78 77 3impia K N L N K L b 0 ..^ 5 y 0 ..^ 5 X V X = 1 y K 0 b E 0 b L E X = 0 b
79 78 expdimp K N L N K L b 0 ..^ 5 y 0 ..^ 5 X V X = 1 y K 0 b E 0 b L E X = 0 b
80 79 com23 K N L N K L b 0 ..^ 5 X V y 0 ..^ 5 X = 1 y K 0 b E 0 b L E X = 0 b
81 80 imp31 K N L N K L b 0 ..^ 5 X V y 0 ..^ 5 X = 1 y K 0 b E 0 b L E X = 0 b
82 opeq1 x = 1 x y = 1 y
83 82 eqeq2d x = 1 X = x y X = 1 y
84 83 imbi1d x = 1 X = x y K 0 b E 0 b L E X = 0 b X = 1 y K 0 b E 0 b L E X = 0 b
85 81 84 imbitrrid x = 1 K N L N K L b 0 ..^ 5 X V y 0 ..^ 5 X = x y K 0 b E 0 b L E X = 0 b
86 55 85 jaoi x = 0 x = 1 K N L N K L b 0 ..^ 5 X V y 0 ..^ 5 X = x y K 0 b E 0 b L E X = 0 b
87 17 86 sylbi x 0 1 K N L N K L b 0 ..^ 5 X V y 0 ..^ 5 X = x y K 0 b E 0 b L E X = 0 b
88 87 expd x 0 1 K N L N K L b 0 ..^ 5 X V y 0 ..^ 5 X = x y K 0 b E 0 b L E X = 0 b
89 88 com12 K N L N K L b 0 ..^ 5 X V x 0 1 y 0 ..^ 5 X = x y K 0 b E 0 b L E X = 0 b
90 89 impd K N L N K L b 0 ..^ 5 X V x 0 1 y 0 ..^ 5 X = x y K 0 b E 0 b L E X = 0 b
91 90 rexlimdvv K N L N K L b 0 ..^ 5 X V x 0 1 y 0 ..^ 5 X = x y K 0 b E 0 b L E X = 0 b
92 15 91 mpd K N L N K L b 0 ..^ 5 X V K 0 b E 0 b L E X = 0 b
93 7 92 mpidan K N L N K L b 0 ..^ 5 K 0 b E 0 b L E X = 0 b