Step |
Hyp |
Ref |
Expression |
1 |
|
phplem2.1 |
|
2 |
|
bren |
|
3 |
|
f1of1 |
|
4 |
|
nnfi |
|
5 |
|
sssucid |
|
6 |
|
f1imaenfi |
|
7 |
5 6
|
mp3an2 |
|
8 |
3 4 7
|
syl2anr |
|
9 |
|
ensymfib |
|
10 |
4 9
|
syl |
|
11 |
10
|
adantr |
|
12 |
8 11
|
mpbird |
|
13 |
|
nnord |
|
14 |
|
orddif |
|
15 |
13 14
|
syl |
|
16 |
15
|
imaeq2d |
|
17 |
|
f1ofn |
|
18 |
1
|
sucid |
|
19 |
|
fnsnfv |
|
20 |
17 18 19
|
sylancl |
|
21 |
20
|
difeq2d |
|
22 |
|
imadmrn |
|
23 |
22
|
eqcomi |
|
24 |
|
f1ofo |
|
25 |
|
forn |
|
26 |
24 25
|
syl |
|
27 |
|
f1odm |
|
28 |
27
|
imaeq2d |
|
29 |
23 26 28
|
3eqtr3a |
|
30 |
29
|
difeq1d |
|
31 |
|
dff1o3 |
|
32 |
|
imadif |
|
33 |
31 32
|
simplbiim |
|
34 |
21 30 33
|
3eqtr4rd |
|
35 |
16 34
|
sylan9eq |
|
36 |
12 35
|
breqtrd |
|
37 |
|
fnfvelrn |
|
38 |
17 18 37
|
sylancl |
|
39 |
25
|
eleq2d |
|
40 |
24 39
|
syl |
|
41 |
38 40
|
mpbid |
|
42 |
|
phplem1 |
|
43 |
41 42
|
sylan2 |
|
44 |
|
nnfi |
|
45 |
|
ensymfib |
|
46 |
44 45
|
syl |
|
47 |
46
|
adantr |
|
48 |
43 47
|
mpbid |
|
49 |
|
entrfil |
|
50 |
4 49
|
syl3an1 |
|
51 |
48 50
|
syl3an3 |
|
52 |
51
|
3expa |
|
53 |
36 52
|
syldanl |
|
54 |
53
|
anandirs |
|
55 |
54
|
ex |
|
56 |
55
|
exlimdv |
|
57 |
2 56
|
syl5bi |
|