Metamath Proof Explorer


Theorem phplem2

Description: Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998) (Revised by Mario Carneiro, 24-Jun-2015) Avoid ax-pow . (Revised by BTernaryTau, 4-Nov-2024)

Ref Expression
Hypothesis phplem2.1 A V
Assertion phplem2 A ω B ω suc A suc B A B

Proof

Step Hyp Ref Expression
1 phplem2.1 A V
2 bren suc A suc B f f : suc A 1-1 onto suc B
3 f1of1 f : suc A 1-1 onto suc B f : suc A 1-1 suc B
4 nnfi A ω A Fin
5 sssucid A suc A
6 f1imaenfi f : suc A 1-1 suc B A suc A A Fin f A A
7 5 6 mp3an2 f : suc A 1-1 suc B A Fin f A A
8 3 4 7 syl2anr A ω f : suc A 1-1 onto suc B f A A
9 ensymfib A Fin A f A f A A
10 4 9 syl A ω A f A f A A
11 10 adantr A ω f : suc A 1-1 onto suc B A f A f A A
12 8 11 mpbird A ω f : suc A 1-1 onto suc B A f A
13 nnord A ω Ord A
14 orddif Ord A A = suc A A
15 13 14 syl A ω A = suc A A
16 15 imaeq2d A ω f A = f suc A A
17 f1ofn f : suc A 1-1 onto suc B f Fn suc A
18 1 sucid A suc A
19 fnsnfv f Fn suc A A suc A f A = f A
20 17 18 19 sylancl f : suc A 1-1 onto suc B f A = f A
21 20 difeq2d f : suc A 1-1 onto suc B f suc A f A = f suc A f A
22 imadmrn f dom f = ran f
23 22 eqcomi ran f = f dom f
24 f1ofo f : suc A 1-1 onto suc B f : suc A onto suc B
25 forn f : suc A onto suc B ran f = suc B
26 24 25 syl f : suc A 1-1 onto suc B ran f = suc B
27 f1odm f : suc A 1-1 onto suc B dom f = suc A
28 27 imaeq2d f : suc A 1-1 onto suc B f dom f = f suc A
29 23 26 28 3eqtr3a f : suc A 1-1 onto suc B suc B = f suc A
30 29 difeq1d f : suc A 1-1 onto suc B suc B f A = f suc A f A
31 dff1o3 f : suc A 1-1 onto suc B f : suc A onto suc B Fun f -1
32 imadif Fun f -1 f suc A A = f suc A f A
33 31 32 simplbiim f : suc A 1-1 onto suc B f suc A A = f suc A f A
34 21 30 33 3eqtr4rd f : suc A 1-1 onto suc B f suc A A = suc B f A
35 16 34 sylan9eq A ω f : suc A 1-1 onto suc B f A = suc B f A
36 12 35 breqtrd A ω f : suc A 1-1 onto suc B A suc B f A
37 fnfvelrn f Fn suc A A suc A f A ran f
38 17 18 37 sylancl f : suc A 1-1 onto suc B f A ran f
39 25 eleq2d f : suc A onto suc B f A ran f f A suc B
40 24 39 syl f : suc A 1-1 onto suc B f A ran f f A suc B
41 38 40 mpbid f : suc A 1-1 onto suc B f A suc B
42 phplem1 B ω f A suc B B suc B f A
43 41 42 sylan2 B ω f : suc A 1-1 onto suc B B suc B f A
44 nnfi B ω B Fin
45 ensymfib B Fin B suc B f A suc B f A B
46 44 45 syl B ω B suc B f A suc B f A B
47 46 adantr B ω f : suc A 1-1 onto suc B B suc B f A suc B f A B
48 43 47 mpbid B ω f : suc A 1-1 onto suc B suc B f A B
49 entrfil A Fin A suc B f A suc B f A B A B
50 4 49 syl3an1 A ω A suc B f A suc B f A B A B
51 48 50 syl3an3 A ω A suc B f A B ω f : suc A 1-1 onto suc B A B
52 51 3expa A ω A suc B f A B ω f : suc A 1-1 onto suc B A B
53 36 52 syldanl A ω f : suc A 1-1 onto suc B B ω f : suc A 1-1 onto suc B A B
54 53 anandirs A ω B ω f : suc A 1-1 onto suc B A B
55 54 ex A ω B ω f : suc A 1-1 onto suc B A B
56 55 exlimdv A ω B ω f f : suc A 1-1 onto suc B A B
57 2 56 syl5bi A ω B ω suc A suc B A B