| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pimrecltneg.x |
|
| 2 |
|
pimrecltneg.b |
|
| 3 |
|
pimrecltneg.n |
|
| 4 |
|
pimrecltneg.c |
|
| 5 |
|
pimrecltneg.l |
|
| 6 |
|
rabidim1 |
|
| 7 |
6
|
adantl |
|
| 8 |
|
1red |
|
| 9 |
4 5
|
ltned |
|
| 10 |
8 4 9
|
redivcld |
|
| 11 |
10
|
rexrd |
|
| 12 |
11
|
adantr |
|
| 13 |
|
0xr |
|
| 14 |
13
|
a1i |
|
| 15 |
6 2
|
sylan2 |
|
| 16 |
|
rabidim2 |
|
| 17 |
16
|
adantl |
|
| 18 |
8
|
adantr |
|
| 19 |
7 3
|
syldan |
|
| 20 |
15 19
|
rereccld |
|
| 21 |
4
|
adantr |
|
| 22 |
|
0red |
|
| 23 |
5
|
adantr |
|
| 24 |
20 21 22 17 23
|
lttrd |
|
| 25 |
15 19
|
reclt0 |
|
| 26 |
24 25
|
mpbird |
|
| 27 |
18 15 26 21 23
|
ltdiv23neg |
|
| 28 |
17 27
|
mpbid |
|
| 29 |
12 14 15 28 26
|
eliood |
|
| 30 |
7 29
|
jca |
|
| 31 |
|
rabid |
|
| 32 |
30 31
|
sylibr |
|
| 33 |
32
|
ex |
|
| 34 |
31
|
simplbi |
|
| 35 |
34
|
adantl |
|
| 36 |
11
|
adantr |
|
| 37 |
13
|
a1i |
|
| 38 |
31
|
simprbi |
|
| 39 |
38
|
adantl |
|
| 40 |
36 37 39
|
ioogtlbd |
|
| 41 |
8
|
adantr |
|
| 42 |
4
|
adantr |
|
| 43 |
5
|
adantr |
|
| 44 |
35 2
|
syldan |
|
| 45 |
36 37 39
|
iooltubd |
|
| 46 |
41 42 43 44 45
|
ltdiv23neg |
|
| 47 |
40 46
|
mpbid |
|
| 48 |
35 47
|
jca |
|
| 49 |
|
rabid |
|
| 50 |
48 49
|
sylibr |
|
| 51 |
50
|
ex |
|
| 52 |
33 51
|
impbid |
|
| 53 |
1 52
|
alrimi |
|
| 54 |
|
nfrab1 |
|
| 55 |
|
nfrab1 |
|
| 56 |
54 55
|
cleqf |
|
| 57 |
53 56
|
sylibr |
|