Metamath Proof Explorer


Theorem pj1eu

Description: Uniqueness of a left projection. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses pj1eu.a +˙=+G
pj1eu.s ˙=LSSumG
pj1eu.o 0˙=0G
pj1eu.z Z=CntzG
pj1eu.2 φTSubGrpG
pj1eu.3 φUSubGrpG
pj1eu.4 φTU=0˙
pj1eu.5 φTZU
Assertion pj1eu φXT˙U∃!xTyUX=x+˙y

Proof

Step Hyp Ref Expression
1 pj1eu.a +˙=+G
2 pj1eu.s ˙=LSSumG
3 pj1eu.o 0˙=0G
4 pj1eu.z Z=CntzG
5 pj1eu.2 φTSubGrpG
6 pj1eu.3 φUSubGrpG
7 pj1eu.4 φTU=0˙
8 pj1eu.5 φTZU
9 1 2 lsmelval TSubGrpGUSubGrpGXT˙UxTyUX=x+˙y
10 5 6 9 syl2anc φXT˙UxTyUX=x+˙y
11 10 biimpa φXT˙UxTyUX=x+˙y
12 reeanv yUvUX=x+˙yX=u+˙vyUX=x+˙yvUX=u+˙v
13 eqtr2 X=x+˙yX=u+˙vx+˙y=u+˙v
14 5 ad2antrr φxTuTyUvUTSubGrpG
15 6 ad2antrr φxTuTyUvUUSubGrpG
16 7 ad2antrr φxTuTyUvUTU=0˙
17 8 ad2antrr φxTuTyUvUTZU
18 simplrl φxTuTyUvUxT
19 simplrr φxTuTyUvUuT
20 simprl φxTuTyUvUyU
21 simprr φxTuTyUvUvU
22 1 3 4 14 15 16 17 18 19 20 21 subgdisjb φxTuTyUvUx+˙y=u+˙vx=uy=v
23 simpl x=uy=vx=u
24 22 23 syl6bi φxTuTyUvUx+˙y=u+˙vx=u
25 13 24 syl5 φxTuTyUvUX=x+˙yX=u+˙vx=u
26 25 rexlimdvva φxTuTyUvUX=x+˙yX=u+˙vx=u
27 12 26 biimtrrid φxTuTyUX=x+˙yvUX=u+˙vx=u
28 27 ralrimivva φxTuTyUX=x+˙yvUX=u+˙vx=u
29 28 adantr φXT˙UxTuTyUX=x+˙yvUX=u+˙vx=u
30 oveq1 x=ux+˙y=u+˙y
31 30 eqeq2d x=uX=x+˙yX=u+˙y
32 31 rexbidv x=uyUX=x+˙yyUX=u+˙y
33 oveq2 y=vu+˙y=u+˙v
34 33 eqeq2d y=vX=u+˙yX=u+˙v
35 34 cbvrexvw yUX=u+˙yvUX=u+˙v
36 32 35 bitrdi x=uyUX=x+˙yvUX=u+˙v
37 36 reu4 ∃!xTyUX=x+˙yxTyUX=x+˙yxTuTyUX=x+˙yvUX=u+˙vx=u
38 11 29 37 sylanbrc φXT˙U∃!xTyUX=x+˙y