| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pj1eu.a |  | 
						
							| 2 |  | pj1eu.s |  | 
						
							| 3 |  | pj1eu.o |  | 
						
							| 4 |  | pj1eu.z |  | 
						
							| 5 |  | pj1eu.2 |  | 
						
							| 6 |  | pj1eu.3 |  | 
						
							| 7 |  | pj1eu.4 |  | 
						
							| 8 |  | pj1eu.5 |  | 
						
							| 9 | 1 2 | lsmelval |  | 
						
							| 10 | 5 6 9 | syl2anc |  | 
						
							| 11 | 10 | biimpa |  | 
						
							| 12 |  | reeanv |  | 
						
							| 13 |  | eqtr2 |  | 
						
							| 14 | 5 | ad2antrr |  | 
						
							| 15 | 6 | ad2antrr |  | 
						
							| 16 | 7 | ad2antrr |  | 
						
							| 17 | 8 | ad2antrr |  | 
						
							| 18 |  | simplrl |  | 
						
							| 19 |  | simplrr |  | 
						
							| 20 |  | simprl |  | 
						
							| 21 |  | simprr |  | 
						
							| 22 | 1 3 4 14 15 16 17 18 19 20 21 | subgdisjb |  | 
						
							| 23 |  | simpl |  | 
						
							| 24 | 22 23 | biimtrdi |  | 
						
							| 25 | 13 24 | syl5 |  | 
						
							| 26 | 25 | rexlimdvva |  | 
						
							| 27 | 12 26 | biimtrrid |  | 
						
							| 28 | 27 | ralrimivva |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 |  | oveq1 |  | 
						
							| 31 | 30 | eqeq2d |  | 
						
							| 32 | 31 | rexbidv |  | 
						
							| 33 |  | oveq2 |  | 
						
							| 34 | 33 | eqeq2d |  | 
						
							| 35 | 34 | cbvrexvw |  | 
						
							| 36 | 32 35 | bitrdi |  | 
						
							| 37 | 36 | reu4 |  | 
						
							| 38 | 11 29 37 | sylanbrc |  |