Metamath Proof Explorer


Theorem pj1lmhm2

Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses pj1lmhm.l L=LSubSpW
pj1lmhm.s ˙=LSSumW
pj1lmhm.z 0˙=0W
pj1lmhm.p P=proj1W
pj1lmhm.1 φWLMod
pj1lmhm.2 φTL
pj1lmhm.3 φUL
pj1lmhm.4 φTU=0˙
Assertion pj1lmhm2 φTPUW𝑠T˙ULMHomW𝑠T

Proof

Step Hyp Ref Expression
1 pj1lmhm.l L=LSubSpW
2 pj1lmhm.s ˙=LSSumW
3 pj1lmhm.z 0˙=0W
4 pj1lmhm.p P=proj1W
5 pj1lmhm.1 φWLMod
6 pj1lmhm.2 φTL
7 pj1lmhm.3 φUL
8 pj1lmhm.4 φTU=0˙
9 1 2 3 4 5 6 7 8 pj1lmhm φTPUW𝑠T˙ULMHomW
10 eqid +W=+W
11 eqid CntzW=CntzW
12 1 lsssssubg WLModLSubGrpW
13 5 12 syl φLSubGrpW
14 13 6 sseldd φTSubGrpW
15 13 7 sseldd φUSubGrpW
16 lmodabl WLModWAbel
17 5 16 syl φWAbel
18 11 17 14 15 ablcntzd φTCntzWU
19 10 2 3 11 14 15 8 18 4 pj1f φTPU:T˙UT
20 19 frnd φranTPUT
21 eqid W𝑠T=W𝑠T
22 21 1 reslmhm2b WLModTLranTPUTTPUW𝑠T˙ULMHomWTPUW𝑠T˙ULMHomW𝑠T
23 5 6 20 22 syl3anc φTPUW𝑠T˙ULMHomWTPUW𝑠T˙ULMHomW𝑠T
24 9 23 mpbid φTPUW𝑠T˙ULMHomW𝑠T