Metamath Proof Explorer


Theorem pjff

Description: A projection is a linear operator. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypothesis pjf.k K=projW
Assertion pjff WPreHilK:domKWLMHomW

Proof

Step Hyp Ref Expression
1 pjf.k K=projW
2 eqid LSubSpW=LSubSpW
3 eqid LSSumW=LSSumW
4 eqid 0W=0W
5 eqid proj1W=proj1W
6 phllmod WPreHilWLMod
7 6 adantr WPreHilxdomKWLMod
8 eqid BaseW=BaseW
9 eqid ocvW=ocvW
10 8 2 9 3 1 pjdm2 WPreHilxdomKxLSubSpWxLSSumWocvWx=BaseW
11 10 simprbda WPreHilxdomKxLSubSpW
12 8 2 lssss xLSubSpWxBaseW
13 11 12 syl WPreHilxdomKxBaseW
14 8 9 2 ocvlss WPreHilxBaseWocvWxLSubSpW
15 13 14 syldan WPreHilxdomKocvWxLSubSpW
16 9 2 4 ocvin WPreHilxLSubSpWxocvWx=0W
17 11 16 syldan WPreHilxdomKxocvWx=0W
18 2 3 4 5 7 11 15 17 pj1lmhm WPreHilxdomKxproj1WocvWxW𝑠xLSSumWocvWxLMHomW
19 10 simplbda WPreHilxdomKxLSSumWocvWx=BaseW
20 19 oveq2d WPreHilxdomKW𝑠xLSSumWocvWx=W𝑠BaseW
21 8 ressid WPreHilW𝑠BaseW=W
22 21 adantr WPreHilxdomKW𝑠BaseW=W
23 20 22 eqtrd WPreHilxdomKW𝑠xLSSumWocvWx=W
24 23 oveq1d WPreHilxdomKW𝑠xLSSumWocvWxLMHomW=WLMHomW
25 18 24 eleqtrd WPreHilxdomKxproj1WocvWxWLMHomW
26 9 5 1 pjfval2 K=xdomKxproj1WocvWx
27 25 26 fmptd WPreHilK:domKWLMHomW