Metamath Proof Explorer


Theorem pjimai

Description: The image of a projection. Lemma 5 in Daniel Lehmann, "A presentation of Quantum Logic based on anand then connective", https://doi.org/10.48550/arXiv.quant-ph/0701113 . (Contributed by NM, 20-Jan-2007) (New usage is discouraged.)

Ref Expression
Hypotheses pjima.1 AS
pjima.2 BC
Assertion pjimai projBA=A+BB

Proof

Step Hyp Ref Expression
1 pjima.1 AS
2 pjima.2 BC
3 1 sheli vAv
4 pjeq BCvprojBv=uuBwBv=u+w
5 2 3 4 sylancr vAprojBv=uuBwBv=u+w
6 ibar uBwBv=u+wuBwBv=u+w
7 6 bicomd uBuBwBv=u+wwBv=u+w
8 5 7 sylan9bbr uBvAprojBv=uwBv=u+w
9 2 cheli uBu
10 2 choccli BC
11 10 cheli wBw
12 hvsubadd vwuv-w=uw+u=v
13 12 3comr uvwv-w=uw+u=v
14 ax-hvcom uwu+w=w+u
15 14 3adant2 uvwu+w=w+u
16 15 eqeq1d uvwu+w=vw+u=v
17 13 16 bitr4d uvwv-w=uu+w=v
18 9 3 11 17 syl3an uBvAwBv-w=uu+w=v
19 eqcom u=v-wv-w=u
20 eqcom v=u+wu+w=v
21 18 19 20 3bitr4g uBvAwBu=v-wv=u+w
22 21 3expa uBvAwBu=v-wv=u+w
23 22 rexbidva uBvAwBu=v-wwBv=u+w
24 8 23 bitr4d uBvAprojBv=uwBu=v-w
25 24 rexbidva uBvAprojBv=uvAwBu=v-w
26 2 pjfni projBFn
27 1 shssii A
28 fvelimab projBFnAuprojBAvAprojBv=u
29 26 27 28 mp2an uprojBAvAprojBv=u
30 10 chshii BS
31 shsel3 ASBSuA+BvAwBu=v-w
32 1 30 31 mp2an uA+BvAwBu=v-w
33 25 29 32 3bitr4g uBuprojBAuA+B
34 33 pm5.32ri uprojBAuBuA+BuB
35 imassrn projBAranprojB
36 2 pjrni ranprojB=B
37 35 36 sseqtri projBAB
38 37 sseli uprojBAuB
39 38 pm4.71i uprojBAuprojBAuB
40 elin uA+BBuA+BuB
41 34 39 40 3bitr4i uprojBAuA+BB
42 41 eqriv projBA=A+BB