Metamath Proof Explorer


Theorem ply1assa

Description: The ring of univariate polynomials is an associative algebra. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypothesis ply1val.1 P=Poly1R
Assertion ply1assa RCRingPAssAlg

Proof

Step Hyp Ref Expression
1 ply1val.1 P=Poly1R
2 crngring RCRingRRing
3 eqid PwSer1R=PwSer1R
4 eqid BaseP=BaseP
5 1 3 4 ply1subrg RRingBasePSubRingPwSer1R
6 2 5 syl RCRingBasePSubRingPwSer1R
7 1 3 4 ply1lss RRingBasePLSubSpPwSer1R
8 2 7 syl RCRingBasePLSubSpPwSer1R
9 3 psr1assa RCRingPwSer1RAssAlg
10 eqid 1PwSer1R=1PwSer1R
11 10 subrg1cl BasePSubRingPwSer1R1PwSer1RBaseP
12 6 11 syl RCRing1PwSer1RBaseP
13 eqid BasePwSer1R=BasePwSer1R
14 13 subrgss BasePSubRingPwSer1RBasePBasePwSer1R
15 6 14 syl RCRingBasePBasePwSer1R
16 1 3 ply1val P=PwSer1R𝑠Base1𝑜mPolyR
17 1 3 4 ply1bas BaseP=Base1𝑜mPolyR
18 17 oveq2i PwSer1R𝑠BaseP=PwSer1R𝑠Base1𝑜mPolyR
19 16 18 eqtr4i P=PwSer1R𝑠BaseP
20 eqid LSubSpPwSer1R=LSubSpPwSer1R
21 19 20 13 10 issubassa PwSer1RAssAlg1PwSer1RBasePBasePBasePwSer1RPAssAlgBasePSubRingPwSer1RBasePLSubSpPwSer1R
22 9 12 15 21 syl3anc RCRingPAssAlgBasePSubRingPwSer1RBasePLSubSpPwSer1R
23 6 8 22 mpbir2and RCRingPAssAlg