Metamath Proof Explorer


Theorem ply1assa

Description: The ring of univariate polynomials is an associative algebra. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypothesis ply1val.1 P = Poly 1 R
Assertion ply1assa R CRing P AssAlg

Proof

Step Hyp Ref Expression
1 ply1val.1 P = Poly 1 R
2 crngring R CRing R Ring
3 eqid PwSer 1 R = PwSer 1 R
4 eqid Base P = Base P
5 1 3 4 ply1subrg R Ring Base P SubRing PwSer 1 R
6 2 5 syl R CRing Base P SubRing PwSer 1 R
7 1 3 4 ply1lss R Ring Base P LSubSp PwSer 1 R
8 2 7 syl R CRing Base P LSubSp PwSer 1 R
9 3 psr1assa R CRing PwSer 1 R AssAlg
10 eqid 1 PwSer 1 R = 1 PwSer 1 R
11 10 subrg1cl Base P SubRing PwSer 1 R 1 PwSer 1 R Base P
12 6 11 syl R CRing 1 PwSer 1 R Base P
13 eqid Base PwSer 1 R = Base PwSer 1 R
14 13 subrgss Base P SubRing PwSer 1 R Base P Base PwSer 1 R
15 6 14 syl R CRing Base P Base PwSer 1 R
16 1 3 ply1val P = PwSer 1 R 𝑠 Base 1 𝑜 mPoly R
17 1 3 4 ply1bas Base P = Base 1 𝑜 mPoly R
18 17 oveq2i PwSer 1 R 𝑠 Base P = PwSer 1 R 𝑠 Base 1 𝑜 mPoly R
19 16 18 eqtr4i P = PwSer 1 R 𝑠 Base P
20 eqid LSubSp PwSer 1 R = LSubSp PwSer 1 R
21 19 20 13 10 issubassa PwSer 1 R AssAlg 1 PwSer 1 R Base P Base P Base PwSer 1 R P AssAlg Base P SubRing PwSer 1 R Base P LSubSp PwSer 1 R
22 9 12 15 21 syl3anc R CRing P AssAlg Base P SubRing PwSer 1 R Base P LSubSp PwSer 1 R
23 6 8 22 mpbir2and R CRing P AssAlg