Metamath Proof Explorer


Theorem ply1scl0OLD

Description: Obsolete version of ply1scl1 as of 12-Mar-2025. (Contributed by Stefan O'Rear, 29-Mar-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ply1scl.p P=Poly1R
ply1scl.a A=algScP
ply1scl0.z 0˙=0R
ply1scl0.y Y=0P
Assertion ply1scl0OLD RRingA0˙=Y

Proof

Step Hyp Ref Expression
1 ply1scl.p P=Poly1R
2 ply1scl.a A=algScP
3 ply1scl0.z 0˙=0R
4 ply1scl0.y Y=0P
5 eqid BaseR=BaseR
6 5 3 ring0cl RRing0˙BaseR
7 1 ply1sca2 IR=ScalarP
8 baseid Base=SlotBasendx
9 8 5 strfvi BaseR=BaseIR
10 eqid P=P
11 eqid 1P=1P
12 2 7 9 10 11 asclval 0˙BaseRA0˙=0˙P1P
13 6 12 syl RRingA0˙=0˙P1P
14 fvi RRingIR=R
15 14 fveq2d RRing0IR=0R
16 3 15 eqtr4id RRing0˙=0IR
17 16 oveq1d RRing0˙P1P=0IRP1P
18 1 ply1lmod RRingPLMod
19 1 ply1ring RRingPRing
20 eqid BaseP=BaseP
21 20 11 ringidcl PRing1PBaseP
22 19 21 syl RRing1PBaseP
23 eqid 0IR=0IR
24 20 7 10 23 4 lmod0vs PLMod1PBaseP0IRP1P=Y
25 18 22 24 syl2anc RRing0IRP1P=Y
26 13 17 25 3eqtrd RRingA0˙=Y