Description: A coefficient of the polynomial over matrices which is the result of the transformation of a polynomial matrix is the matrix consisting of the coefficients in the polynomial entries of the polynomial matrix. (Contributed by AV, 20-Oct-2019) (Revised by AV, 5-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pm2mpval.p | |
|
pm2mpval.c | |
||
pm2mpval.b | |
||
pm2mpval.m | |
||
pm2mpval.e | |
||
pm2mpval.x | |
||
pm2mpval.a | |
||
pm2mpval.q | |
||
pm2mpval.t | |
||
Assertion | pm2mpcoe1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2mpval.p | |
|
2 | pm2mpval.c | |
|
3 | pm2mpval.b | |
|
4 | pm2mpval.m | |
|
5 | pm2mpval.e | |
|
6 | pm2mpval.x | |
|
7 | pm2mpval.a | |
|
8 | pm2mpval.q | |
|
9 | pm2mpval.t | |
|
10 | simpll | |
|
11 | simplr | |
|
12 | simprl | |
|
13 | 1 2 3 4 5 6 7 8 9 | pm2mpfval | |
14 | 10 11 12 13 | syl3anc | |
15 | 14 | fveq2d | |
16 | 15 | fveq1d | |
17 | eqid | |
|
18 | 7 | matring | |
19 | 18 | adantr | |
20 | eqid | |
|
21 | eqid | |
|
22 | 11 | adantr | |
23 | 12 | adantr | |
24 | simpr | |
|
25 | 1 2 3 7 20 | decpmatcl | |
26 | 22 23 24 25 | syl3anc | |
27 | 26 | ralrimiva | |
28 | 1 2 3 7 21 | decpmatfsupp | |
29 | 28 | ad2ant2lr | |
30 | simpr | |
|
31 | 30 | adantl | |
32 | 8 17 6 5 19 20 4 21 27 29 31 | gsummoncoe1 | |
33 | csbov2g | |
|
34 | csbvarg | |
|
35 | 34 | oveq2d | |
36 | 33 35 | eqtrd | |
37 | 36 | adantl | |
38 | 37 | adantl | |
39 | 16 32 38 | 3eqtrd | |