Metamath Proof Explorer


Theorem pm2mpcoe1

Description: A coefficient of the polynomial over matrices which is the result of the transformation of a polynomial matrix is the matrix consisting of the coefficients in the polynomial entries of the polynomial matrix. (Contributed by AV, 20-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p P=Poly1R
pm2mpval.c C=NMatP
pm2mpval.b B=BaseC
pm2mpval.m ˙=Q
pm2mpval.e ×˙=mulGrpQ
pm2mpval.x X=var1A
pm2mpval.a A=NMatR
pm2mpval.q Q=Poly1A
pm2mpval.t T=NpMatToMatPolyR
Assertion pm2mpcoe1 NFinRRingMBK0coe1TMK=MdecompPMatK

Proof

Step Hyp Ref Expression
1 pm2mpval.p P=Poly1R
2 pm2mpval.c C=NMatP
3 pm2mpval.b B=BaseC
4 pm2mpval.m ˙=Q
5 pm2mpval.e ×˙=mulGrpQ
6 pm2mpval.x X=var1A
7 pm2mpval.a A=NMatR
8 pm2mpval.q Q=Poly1A
9 pm2mpval.t T=NpMatToMatPolyR
10 simpll NFinRRingMBK0NFin
11 simplr NFinRRingMBK0RRing
12 simprl NFinRRingMBK0MB
13 1 2 3 4 5 6 7 8 9 pm2mpfval NFinRRingMBTM=Qk0MdecompPMatk˙k×˙X
14 10 11 12 13 syl3anc NFinRRingMBK0TM=Qk0MdecompPMatk˙k×˙X
15 14 fveq2d NFinRRingMBK0coe1TM=coe1Qk0MdecompPMatk˙k×˙X
16 15 fveq1d NFinRRingMBK0coe1TMK=coe1Qk0MdecompPMatk˙k×˙XK
17 eqid BaseQ=BaseQ
18 7 matring NFinRRingARing
19 18 adantr NFinRRingMBK0ARing
20 eqid BaseA=BaseA
21 eqid 0A=0A
22 11 adantr NFinRRingMBK0k0RRing
23 12 adantr NFinRRingMBK0k0MB
24 simpr NFinRRingMBK0k0k0
25 1 2 3 7 20 decpmatcl RRingMBk0MdecompPMatkBaseA
26 22 23 24 25 syl3anc NFinRRingMBK0k0MdecompPMatkBaseA
27 26 ralrimiva NFinRRingMBK0k0MdecompPMatkBaseA
28 1 2 3 7 21 decpmatfsupp RRingMBfinSupp0Ak0MdecompPMatk
29 28 ad2ant2lr NFinRRingMBK0finSupp0Ak0MdecompPMatk
30 simpr MBK0K0
31 30 adantl NFinRRingMBK0K0
32 8 17 6 5 19 20 4 21 27 29 31 gsummoncoe1 NFinRRingMBK0coe1Qk0MdecompPMatk˙k×˙XK=K/kMdecompPMatk
33 csbov2g K0K/kMdecompPMatk=MdecompPMatK/kk
34 csbvarg K0K/kk=K
35 34 oveq2d K0MdecompPMatK/kk=MdecompPMatK
36 33 35 eqtrd K0K/kMdecompPMatk=MdecompPMatK
37 36 adantl MBK0K/kMdecompPMatk=MdecompPMatK
38 37 adantl NFinRRingMBK0K/kMdecompPMatk=MdecompPMatK
39 16 32 38 3eqtrd NFinRRingMBK0coe1TMK=MdecompPMatK