Description: Lemma 1 for pmatcollpw1 . (Contributed by AV, 28-Sep-2019) (Revised by AV, 3-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmatcollpw1.p | |
|
pmatcollpw1.c | |
||
pmatcollpw1.b | |
||
pmatcollpw1.m | |
||
pmatcollpw1.e | |
||
pmatcollpw1.x | |
||
Assertion | pmatcollpw1lem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatcollpw1.p | |
|
2 | pmatcollpw1.c | |
|
3 | pmatcollpw1.b | |
|
4 | pmatcollpw1.m | |
|
5 | pmatcollpw1.e | |
|
6 | pmatcollpw1.x | |
|
7 | fvexd | |
|
8 | ovexd | |
|
9 | oveq2 | |
|
10 | 9 | oveqd | |
11 | oveq1 | |
|
12 | 10 11 | oveq12d | |
13 | eqid | |
|
14 | simp2 | |
|
15 | simp3 | |
|
16 | simp13 | |
|
17 | 2 13 3 14 15 16 | matecld | |
18 | eqid | |
|
19 | eqid | |
|
20 | 18 13 1 19 | coe1ae0 | |
21 | 17 20 | syl | |
22 | simpl12 | |
|
23 | 16 | adantr | |
24 | simpr | |
|
25 | 3simpc | |
|
26 | 25 | adantr | |
27 | 1 2 3 | decpmate | |
28 | 22 23 24 26 27 | syl31anc | |
29 | 28 | adantr | |
30 | simpr | |
|
31 | 29 30 | eqtrd | |
32 | 31 | oveq1d | |
33 | eqid | |
|
34 | 1 6 33 5 13 | ply1moncl | |
35 | 22 24 34 | syl2anc | |
36 | 1 13 4 19 | ply10s0 | |
37 | 22 35 36 | syl2anc | |
38 | 37 | adantr | |
39 | 32 38 | eqtrd | |
40 | 39 | ex | |
41 | 40 | imim2d | |
42 | 41 | ralimdva | |
43 | 42 | reximdv | |
44 | 21 43 | mpd | |
45 | 7 8 12 44 | mptnn0fsuppd | |