Metamath Proof Explorer


Theorem pmatcollpw1lem1

Description: Lemma 1 for pmatcollpw1 . (Contributed by AV, 28-Sep-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses pmatcollpw1.p P=Poly1R
pmatcollpw1.c C=NMatP
pmatcollpw1.b B=BaseC
pmatcollpw1.m ×˙=P
pmatcollpw1.e ×˙=mulGrpP
pmatcollpw1.x X=var1R
Assertion pmatcollpw1lem1 NFinRRingMBINJNfinSupp0Pn0IMdecompPMatnJ×˙n×˙X

Proof

Step Hyp Ref Expression
1 pmatcollpw1.p P=Poly1R
2 pmatcollpw1.c C=NMatP
3 pmatcollpw1.b B=BaseC
4 pmatcollpw1.m ×˙=P
5 pmatcollpw1.e ×˙=mulGrpP
6 pmatcollpw1.x X=var1R
7 fvexd NFinRRingMBINJN0PV
8 ovexd NFinRRingMBINJNn0IMdecompPMatnJ×˙n×˙XV
9 oveq2 n=xMdecompPMatn=MdecompPMatx
10 9 oveqd n=xIMdecompPMatnJ=IMdecompPMatxJ
11 oveq1 n=xn×˙X=x×˙X
12 10 11 oveq12d n=xIMdecompPMatnJ×˙n×˙X=IMdecompPMatxJ×˙x×˙X
13 eqid BaseP=BaseP
14 simp2 NFinRRingMBINJNIN
15 simp3 NFinRRingMBINJNJN
16 simp13 NFinRRingMBINJNMB
17 2 13 3 14 15 16 matecld NFinRRingMBINJNIMJBaseP
18 eqid coe1IMJ=coe1IMJ
19 eqid 0R=0R
20 18 13 1 19 coe1ae0 IMJBasePs0x0s<xcoe1IMJx=0R
21 17 20 syl NFinRRingMBINJNs0x0s<xcoe1IMJx=0R
22 simpl12 NFinRRingMBINJNx0RRing
23 16 adantr NFinRRingMBINJNx0MB
24 simpr NFinRRingMBINJNx0x0
25 3simpc NFinRRingMBINJNINJN
26 25 adantr NFinRRingMBINJNx0INJN
27 1 2 3 decpmate RRingMBx0INJNIMdecompPMatxJ=coe1IMJx
28 22 23 24 26 27 syl31anc NFinRRingMBINJNx0IMdecompPMatxJ=coe1IMJx
29 28 adantr NFinRRingMBINJNx0coe1IMJx=0RIMdecompPMatxJ=coe1IMJx
30 simpr NFinRRingMBINJNx0coe1IMJx=0Rcoe1IMJx=0R
31 29 30 eqtrd NFinRRingMBINJNx0coe1IMJx=0RIMdecompPMatxJ=0R
32 31 oveq1d NFinRRingMBINJNx0coe1IMJx=0RIMdecompPMatxJ×˙x×˙X=0R×˙x×˙X
33 eqid mulGrpP=mulGrpP
34 1 6 33 5 13 ply1moncl RRingx0x×˙XBaseP
35 22 24 34 syl2anc NFinRRingMBINJNx0x×˙XBaseP
36 1 13 4 19 ply10s0 RRingx×˙XBaseP0R×˙x×˙X=0P
37 22 35 36 syl2anc NFinRRingMBINJNx00R×˙x×˙X=0P
38 37 adantr NFinRRingMBINJNx0coe1IMJx=0R0R×˙x×˙X=0P
39 32 38 eqtrd NFinRRingMBINJNx0coe1IMJx=0RIMdecompPMatxJ×˙x×˙X=0P
40 39 ex NFinRRingMBINJNx0coe1IMJx=0RIMdecompPMatxJ×˙x×˙X=0P
41 40 imim2d NFinRRingMBINJNx0s<xcoe1IMJx=0Rs<xIMdecompPMatxJ×˙x×˙X=0P
42 41 ralimdva NFinRRingMBINJNx0s<xcoe1IMJx=0Rx0s<xIMdecompPMatxJ×˙x×˙X=0P
43 42 reximdv NFinRRingMBINJNs0x0s<xcoe1IMJx=0Rs0x0s<xIMdecompPMatxJ×˙x×˙X=0P
44 21 43 mpd NFinRRingMBINJNs0x0s<xIMdecompPMatxJ×˙x×˙X=0P
45 7 8 12 44 mptnn0fsuppd NFinRRingMBINJNfinSupp0Pn0IMdecompPMatnJ×˙n×˙X