| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw1.p |  | 
						
							| 2 |  | pmatcollpw1.c |  | 
						
							| 3 |  | pmatcollpw1.b |  | 
						
							| 4 |  | pmatcollpw1.m |  | 
						
							| 5 |  | pmatcollpw1.e |  | 
						
							| 6 |  | pmatcollpw1.x |  | 
						
							| 7 |  | fvexd |  | 
						
							| 8 |  | ovexd |  | 
						
							| 9 |  | oveq2 |  | 
						
							| 10 | 9 | oveqd |  | 
						
							| 11 |  | oveq1 |  | 
						
							| 12 | 10 11 | oveq12d |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | simp2 |  | 
						
							| 15 |  | simp3 |  | 
						
							| 16 |  | simp13 |  | 
						
							| 17 | 2 13 3 14 15 16 | matecld |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 18 13 1 19 | coe1ae0 |  | 
						
							| 21 | 17 20 | syl |  | 
						
							| 22 |  | simpl12 |  | 
						
							| 23 | 16 | adantr |  | 
						
							| 24 |  | simpr |  | 
						
							| 25 |  | 3simpc |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 | 1 2 3 | decpmate |  | 
						
							| 28 | 22 23 24 26 27 | syl31anc |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 |  | simpr |  | 
						
							| 31 | 29 30 | eqtrd |  | 
						
							| 32 | 31 | oveq1d |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 1 6 33 5 13 | ply1moncl |  | 
						
							| 35 | 22 24 34 | syl2anc |  | 
						
							| 36 | 1 13 4 19 | ply10s0 |  | 
						
							| 37 | 22 35 36 | syl2anc |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 | 32 38 | eqtrd |  | 
						
							| 40 | 39 | ex |  | 
						
							| 41 | 40 | imim2d |  | 
						
							| 42 | 41 | ralimdva |  | 
						
							| 43 | 42 | reximdv |  | 
						
							| 44 | 21 43 | mpd |  | 
						
							| 45 | 7 8 12 44 | mptnn0fsuppd |  |