Metamath Proof Explorer


Theorem pmatcollpw1lem2

Description: Lemma 2 for pmatcollpw1 : An entry of a polynomial matrix is the sum of the entries of the matrix consisting of the coefficients in the entries of the polynomial matrix multiplied with the corresponding power of the variable. (Contributed by AV, 25-Sep-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses pmatcollpw1.p P=Poly1R
pmatcollpw1.c C=NMatP
pmatcollpw1.b B=BaseC
pmatcollpw1.m ×˙=P
pmatcollpw1.e ×˙=mulGrpP
pmatcollpw1.x X=var1R
Assertion pmatcollpw1lem2 NFinRRingMBaNbNaMb=Pn0aMdecompPMatnb×˙n×˙X

Proof

Step Hyp Ref Expression
1 pmatcollpw1.p P=Poly1R
2 pmatcollpw1.c C=NMatP
3 pmatcollpw1.b B=BaseC
4 pmatcollpw1.m ×˙=P
5 pmatcollpw1.e ×˙=mulGrpP
6 pmatcollpw1.x X=var1R
7 simpl2 NFinRRingMBaNbNRRing
8 eqid BaseP=BaseP
9 simprl NFinRRingMBaNbNaN
10 simprr NFinRRingMBaNbNbN
11 simpl3 NFinRRingMBaNbNMB
12 2 8 3 9 10 11 matecld NFinRRingMBaNbNaMbBaseP
13 eqid mulGrpP=mulGrpP
14 eqid mulGrpP=mulGrpP
15 eqid coe1aMb=coe1aMb
16 1 6 8 4 13 14 15 ply1coe RRingaMbBasePaMb=Pn0coe1aMbn×˙nmulGrpPX
17 7 12 16 syl2anc NFinRRingMBaNbNaMb=Pn0coe1aMbn×˙nmulGrpPX
18 7 adantr NFinRRingMBaNbNn0RRing
19 11 adantr NFinRRingMBaNbNn0MB
20 simpr NFinRRingMBaNbNn0n0
21 simpr NFinRRingMBaNbNaNbN
22 21 adantr NFinRRingMBaNbNn0aNbN
23 1 2 3 decpmate RRingMBn0aNbNaMdecompPMatnb=coe1aMbn
24 18 19 20 22 23 syl31anc NFinRRingMBaNbNn0aMdecompPMatnb=coe1aMbn
25 24 eqcomd NFinRRingMBaNbNn0coe1aMbn=aMdecompPMatnb
26 5 eqcomi mulGrpP=×˙
27 26 oveqi nmulGrpPX=n×˙X
28 27 a1i NFinRRingMBaNbNn0nmulGrpPX=n×˙X
29 25 28 oveq12d NFinRRingMBaNbNn0coe1aMbn×˙nmulGrpPX=aMdecompPMatnb×˙n×˙X
30 29 mpteq2dva NFinRRingMBaNbNn0coe1aMbn×˙nmulGrpPX=n0aMdecompPMatnb×˙n×˙X
31 30 oveq2d NFinRRingMBaNbNPn0coe1aMbn×˙nmulGrpPX=Pn0aMdecompPMatnb×˙n×˙X
32 17 31 eqtrd NFinRRingMBaNbNaMb=Pn0aMdecompPMatnb×˙n×˙X