Description: Lemma 2 for pmatcollpw1 : An entry of a polynomial matrix is the sum of the entries of the matrix consisting of the coefficients in the entries of the polynomial matrix multiplied with the corresponding power of the variable. (Contributed by AV, 25-Sep-2019) (Revised by AV, 3-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmatcollpw1.p | |
|
pmatcollpw1.c | |
||
pmatcollpw1.b | |
||
pmatcollpw1.m | |
||
pmatcollpw1.e | |
||
pmatcollpw1.x | |
||
Assertion | pmatcollpw1lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatcollpw1.p | |
|
2 | pmatcollpw1.c | |
|
3 | pmatcollpw1.b | |
|
4 | pmatcollpw1.m | |
|
5 | pmatcollpw1.e | |
|
6 | pmatcollpw1.x | |
|
7 | simpl2 | |
|
8 | eqid | |
|
9 | simprl | |
|
10 | simprr | |
|
11 | simpl3 | |
|
12 | 2 8 3 9 10 11 | matecld | |
13 | eqid | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | 1 6 8 4 13 14 15 | ply1coe | |
17 | 7 12 16 | syl2anc | |
18 | 7 | adantr | |
19 | 11 | adantr | |
20 | simpr | |
|
21 | simpr | |
|
22 | 21 | adantr | |
23 | 1 2 3 | decpmate | |
24 | 18 19 20 22 23 | syl31anc | |
25 | 24 | eqcomd | |
26 | 5 | eqcomi | |
27 | 26 | oveqi | |
28 | 27 | a1i | |
29 | 25 28 | oveq12d | |
30 | 29 | mpteq2dva | |
31 | 30 | oveq2d | |
32 | 17 31 | eqtrd | |