Metamath Proof Explorer


Theorem prdsmulr

Description: Multiplication in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p P = S 𝑠 R
prdsbas.s φ S V
prdsbas.r φ R W
prdsbas.b B = Base P
prdsbas.i φ dom R = I
prdsmulr.t · ˙ = P
Assertion prdsmulr φ · ˙ = f B , g B x I f x R x g x

Proof

Step Hyp Ref Expression
1 prdsbas.p P = S 𝑠 R
2 prdsbas.s φ S V
3 prdsbas.r φ R W
4 prdsbas.b B = Base P
5 prdsbas.i φ dom R = I
6 prdsmulr.t · ˙ = P
7 eqid Base S = Base S
8 1 2 3 4 5 prdsbas φ B = x I Base R x
9 eqid + P = + P
10 1 2 3 4 5 9 prdsplusg φ + P = f B , g B x I f x + R x g x
11 eqidd φ f B , g B x I f x R x g x = f B , g B x I f x R x g x
12 eqidd φ f Base S , g B x I f R x g x = f Base S , g B x I f R x g x
13 eqidd φ f B , g B S x I f x 𝑖 R x g x = f B , g B S x I f x 𝑖 R x g x
14 eqidd φ 𝑡 TopOpen R = 𝑡 TopOpen R
15 eqidd φ f g | f g B x I f x R x g x = f g | f g B x I f x R x g x
16 eqidd φ f B , g B sup ran x I f x dist R x g x 0 * < = f B , g B sup ran x I f x dist R x g x 0 * <
17 eqidd φ f B , g B x I f x Hom R x g x = f B , g B x I f x Hom R x g x
18 eqidd φ a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x = a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
19 1 7 5 8 10 11 12 13 14 15 16 17 18 2 3 prdsval φ P = Base ndx B + ndx + P ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
20 mulrid 𝑟 = Slot ndx
21 ovssunirn f x R x g x ran R x
22 20 strfvss R x ran R x
23 fvssunirn R x ran R
24 rnss R x ran R ran R x ran ran R
25 uniss ran R x ran ran R ran R x ran ran R
26 23 24 25 mp2b ran R x ran ran R
27 22 26 sstri R x ran ran R
28 rnss R x ran ran R ran R x ran ran ran R
29 uniss ran R x ran ran ran R ran R x ran ran ran R
30 27 28 29 mp2b ran R x ran ran ran R
31 21 30 sstri f x R x g x ran ran ran R
32 ovex f x R x g x V
33 32 elpw f x R x g x 𝒫 ran ran ran R f x R x g x ran ran ran R
34 31 33 mpbir f x R x g x 𝒫 ran ran ran R
35 34 a1i φ x I f x R x g x 𝒫 ran ran ran R
36 35 fmpttd φ x I f x R x g x : I 𝒫 ran ran ran R
37 rnexg R W ran R V
38 uniexg ran R V ran R V
39 3 37 38 3syl φ ran R V
40 rnexg ran R V ran ran R V
41 uniexg ran ran R V ran ran R V
42 39 40 41 3syl φ ran ran R V
43 rnexg ran ran R V ran ran ran R V
44 uniexg ran ran ran R V ran ran ran R V
45 42 43 44 3syl φ ran ran ran R V
46 45 pwexd φ 𝒫 ran ran ran R V
47 3 dmexd φ dom R V
48 5 47 eqeltrrd φ I V
49 46 48 elmapd φ x I f x R x g x 𝒫 ran ran ran R I x I f x R x g x : I 𝒫 ran ran ran R
50 36 49 mpbird φ x I f x R x g x 𝒫 ran ran ran R I
51 50 ralrimivw φ g B x I f x R x g x 𝒫 ran ran ran R I
52 51 ralrimivw φ f B g B x I f x R x g x 𝒫 ran ran ran R I
53 eqid f B , g B x I f x R x g x = f B , g B x I f x R x g x
54 53 fmpo f B g B x I f x R x g x 𝒫 ran ran ran R I f B , g B x I f x R x g x : B × B 𝒫 ran ran ran R I
55 52 54 sylib φ f B , g B x I f x R x g x : B × B 𝒫 ran ran ran R I
56 4 fvexi B V
57 56 56 xpex B × B V
58 ovex 𝒫 ran ran ran R I V
59 fex2 f B , g B x I f x R x g x : B × B 𝒫 ran ran ran R I B × B V 𝒫 ran ran ran R I V f B , g B x I f x R x g x V
60 57 58 59 mp3an23 f B , g B x I f x R x g x : B × B 𝒫 ran ran ran R I f B , g B x I f x R x g x V
61 55 60 syl φ f B , g B x I f x R x g x V
62 snsstp3 ndx f B , g B x I f x R x g x Base ndx B + ndx + P ndx f B , g B x I f x R x g x
63 ssun1 Base ndx B + ndx + P ndx f B , g B x I f x R x g x Base ndx B + ndx + P ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x
64 62 63 sstri ndx f B , g B x I f x R x g x Base ndx B + ndx + P ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x
65 ssun1 Base ndx B + ndx + P ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x Base ndx B + ndx + P ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
66 64 65 sstri ndx f B , g B x I f x R x g x Base ndx B + ndx + P ndx f B , g B x I f x R x g x Scalar ndx S ndx f Base S , g B x I f R x g x 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx 𝑡 TopOpen R ndx f g | f g B x I f x R x g x dist ndx f B , g B sup ran x I f x dist R x g x 0 * < Hom ndx f B , g B x I f x Hom R x g x comp ndx a B × B , c B d 2 nd a f B , g B x I f x Hom R x g x c , e f B , g B x I f x Hom R x g x a x I d x 1 st a x 2 nd a x comp R x c x e x
67 19 6 20 61 66 prdsvallem φ · ˙ = f B , g B x I f x R x g x