Metamath Proof Explorer


Theorem prmdvdsfmtnof1

Description: The mapping of a Fermat number to its smallest prime factor is a one-to-one function. (Contributed by AV, 4-Aug-2021)

Ref Expression
Hypothesis prmdvdsfmtnof.1 F=franFermatNosupp|pf<
Assertion prmdvdsfmtnof1 F:ranFermatNo1-1

Proof

Step Hyp Ref Expression
1 prmdvdsfmtnof.1 F=franFermatNosupp|pf<
2 1 prmdvdsfmtnof F:ranFermatNo
3 breq2 f=gpfpg
4 3 rabbidv f=gp|pf=p|pg
5 4 infeq1d f=gsupp|pf<=supp|pg<
6 id granFermatNogranFermatNo
7 ltso <Or
8 7 a1i granFermatNo<Or
9 8 infexd granFermatNosupp|pg<V
10 1 5 6 9 fvmptd3 granFermatNoFg=supp|pg<
11 breq2 f=hpfph
12 11 rabbidv f=hp|pf=p|ph
13 12 infeq1d f=hsupp|pf<=supp|ph<
14 id hranFermatNohranFermatNo
15 7 a1i hranFermatNo<Or
16 15 infexd hranFermatNosupp|ph<V
17 1 13 14 16 fvmptd3 hranFermatNoFh=supp|ph<
18 10 17 eqeqan12d granFermatNohranFermatNoFg=Fhsupp|pg<=supp|ph<
19 fmtnorn granFermatNon0FermatNon=g
20 fmtnoge3 n0FermatNon3
21 uzuzle23 FermatNon3FermatNon2
22 20 21 syl n0FermatNon2
23 22 adantr n0FermatNon=gFermatNon2
24 eleq1 FermatNon=gFermatNon2g2
25 24 adantl n0FermatNon=gFermatNon2g2
26 23 25 mpbid n0FermatNon=gg2
27 26 rexlimiva n0FermatNon=gg2
28 19 27 sylbi granFermatNog2
29 fmtnorn hranFermatNon0FermatNon=h
30 22 adantr n0FermatNon=hFermatNon2
31 eleq1 FermatNon=hFermatNon2h2
32 31 adantl n0FermatNon=hFermatNon2h2
33 30 32 mpbid n0FermatNon=hh2
34 33 rexlimiva n0FermatNon=hh2
35 29 34 sylbi hranFermatNoh2
36 eqid supp|pg<=supp|pg<
37 eqid supp|ph<=supp|ph<
38 36 37 prmdvdsfmtnof1lem1 g2h2supp|pg<=supp|ph<supp|pg<supp|pg<gsupp|pg<h
39 28 35 38 syl2an granFermatNohranFermatNosupp|pg<=supp|ph<supp|pg<supp|pg<gsupp|pg<h
40 prmdvdsfmtnof1lem2 granFermatNohranFermatNosupp|pg<supp|pg<gsupp|pg<hg=h
41 39 40 syld granFermatNohranFermatNosupp|pg<=supp|ph<g=h
42 18 41 sylbid granFermatNohranFermatNoFg=Fhg=h
43 42 rgen2 granFermatNohranFermatNoFg=Fhg=h
44 dff13 F:ranFermatNo1-1F:ranFermatNogranFermatNohranFermatNoFg=Fhg=h
45 2 43 44 mpbir2an F:ranFermatNo1-1