Description: A group of prime order is simple. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prmgrpsimpgd.1 | |
|
prmgrpsimpgd.2 | |
||
prmgrpsimpgd.3 | |
||
Assertion | prmgrpsimpgd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmgrpsimpgd.1 | |
|
2 | prmgrpsimpgd.2 | |
|
3 | prmgrpsimpgd.3 | |
|
4 | eqid | |
|
5 | fveq2 | |
|
6 | 5 | adantl | |
7 | 4 | fvexi | |
8 | hashsng | |
|
9 | 7 8 | mp1i | |
10 | 6 9 | eqtr3d | |
11 | 3 | adantr | |
12 | 10 11 | eqeltrrd | |
13 | 1nprm | |
|
14 | 13 | a1i | |
15 | 12 14 | pm2.65da | |
16 | nsgsubg | |
|
17 | eqid | |
|
18 | 1 | fvexi | |
19 | 18 | a1i | |
20 | prmnn | |
|
21 | 3 20 | syl | |
22 | 21 | nnnn0d | |
23 | hashvnfin | |
|
24 | 19 22 23 | syl2anc | |
25 | 17 24 | mpi | |
26 | 25 | ad2antrr | |
27 | 1 | subgss | |
28 | 27 | ad2antlr | |
29 | simpr | |
|
30 | 26 28 29 | phphashrd | |
31 | 30 | olcd | |
32 | simpr | |
|
33 | 4 | subg0cl | |
34 | 33 | ad2antlr | |
35 | vex | |
|
36 | 35 | a1i | |
37 | 32 34 36 | hash1elsn | |
38 | 37 | orcd | |
39 | 1 | lagsubg | |
40 | 25 39 | sylan2 | |
41 | 40 | ancoms | |
42 | 3 | adantr | |
43 | 25 | adantr | |
44 | 27 | adantl | |
45 | 43 44 | ssfid | |
46 | hashcl | |
|
47 | 45 46 | syl | |
48 | 33 | adantl | |
49 | 35 | a1i | |
50 | 48 49 | hashelne0d | |
51 | 50 | neqned | |
52 | elnnne0 | |
|
53 | 47 51 52 | sylanbrc | |
54 | dvdsprime | |
|
55 | 42 53 54 | syl2anc | |
56 | 41 55 | mpbid | |
57 | 31 38 56 | mpjaodan | |
58 | 16 57 | sylan2 | |
59 | 1 4 2 15 58 | 2nsgsimpgd | |