Metamath Proof Explorer


Theorem prmgrpsimpgd

Description: A group of prime order is simple. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses prmgrpsimpgd.1 B=BaseG
prmgrpsimpgd.2 φGGrp
prmgrpsimpgd.3 φB
Assertion prmgrpsimpgd φGSimpGrp

Proof

Step Hyp Ref Expression
1 prmgrpsimpgd.1 B=BaseG
2 prmgrpsimpgd.2 φGGrp
3 prmgrpsimpgd.3 φB
4 eqid 0G=0G
5 fveq2 0G=B0G=B
6 5 adantl φ0G=B0G=B
7 4 fvexi 0GV
8 hashsng 0GV0G=1
9 7 8 mp1i φ0G=B0G=1
10 6 9 eqtr3d φ0G=BB=1
11 3 adantr φ0G=BB
12 10 11 eqeltrrd φ0G=B1
13 1nprm ¬1
14 13 a1i φ0G=B¬1
15 12 14 pm2.65da φ¬0G=B
16 nsgsubg xNrmSGrpGxSubGrpG
17 eqid B=B
18 1 fvexi BV
19 18 a1i φBV
20 prmnn BB
21 3 20 syl φB
22 21 nnnn0d φB0
23 hashvnfin BVB0B=BBFin
24 19 22 23 syl2anc φB=BBFin
25 17 24 mpi φBFin
26 25 ad2antrr φxSubGrpGx=BBFin
27 1 subgss xSubGrpGxB
28 27 ad2antlr φxSubGrpGx=BxB
29 simpr φxSubGrpGx=Bx=B
30 26 28 29 phphashrd φxSubGrpGx=Bx=B
31 30 olcd φxSubGrpGx=Bx=0Gx=B
32 simpr φxSubGrpGx=1x=1
33 4 subg0cl xSubGrpG0Gx
34 33 ad2antlr φxSubGrpGx=10Gx
35 vex xV
36 35 a1i φxSubGrpGx=1xV
37 32 34 36 hash1elsn φxSubGrpGx=1x=0G
38 37 orcd φxSubGrpGx=1x=0Gx=B
39 1 lagsubg xSubGrpGBFinxB
40 25 39 sylan2 xSubGrpGφxB
41 40 ancoms φxSubGrpGxB
42 3 adantr φxSubGrpGB
43 25 adantr φxSubGrpGBFin
44 27 adantl φxSubGrpGxB
45 43 44 ssfid φxSubGrpGxFin
46 hashcl xFinx0
47 45 46 syl φxSubGrpGx0
48 33 adantl φxSubGrpG0Gx
49 35 a1i φxSubGrpGxV
50 48 49 hashelne0d φxSubGrpG¬x=0
51 50 neqned φxSubGrpGx0
52 elnnne0 xx0x0
53 47 51 52 sylanbrc φxSubGrpGx
54 dvdsprime BxxBx=Bx=1
55 42 53 54 syl2anc φxSubGrpGxBx=Bx=1
56 41 55 mpbid φxSubGrpGx=Bx=1
57 31 38 56 mpjaodan φxSubGrpGx=0Gx=B
58 16 57 sylan2 φxNrmSGrpGx=0Gx=B
59 1 4 2 15 58 2nsgsimpgd φGSimpGrp