Metamath Proof Explorer


Theorem prmgrpsimpgd

Description: A group of prime order is simple. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses prmgrpsimpgd.1 B = Base G
prmgrpsimpgd.2 φ G Grp
prmgrpsimpgd.3 φ B
Assertion prmgrpsimpgd φ G SimpGrp

Proof

Step Hyp Ref Expression
1 prmgrpsimpgd.1 B = Base G
2 prmgrpsimpgd.2 φ G Grp
3 prmgrpsimpgd.3 φ B
4 eqid 0 G = 0 G
5 fveq2 0 G = B 0 G = B
6 5 adantl φ 0 G = B 0 G = B
7 4 fvexi 0 G V
8 hashsng 0 G V 0 G = 1
9 7 8 mp1i φ 0 G = B 0 G = 1
10 6 9 eqtr3d φ 0 G = B B = 1
11 3 adantr φ 0 G = B B
12 10 11 eqeltrrd φ 0 G = B 1
13 1nprm ¬ 1
14 13 a1i φ 0 G = B ¬ 1
15 12 14 pm2.65da φ ¬ 0 G = B
16 nsgsubg x NrmSGrp G x SubGrp G
17 eqid B = B
18 1 fvexi B V
19 18 a1i φ B V
20 prmnn B B
21 3 20 syl φ B
22 21 nnnn0d φ B 0
23 hashvnfin B V B 0 B = B B Fin
24 19 22 23 syl2anc φ B = B B Fin
25 17 24 mpi φ B Fin
26 25 ad2antrr φ x SubGrp G x = B B Fin
27 1 subgss x SubGrp G x B
28 27 ad2antlr φ x SubGrp G x = B x B
29 simpr φ x SubGrp G x = B x = B
30 26 28 29 phphashrd φ x SubGrp G x = B x = B
31 30 olcd φ x SubGrp G x = B x = 0 G x = B
32 simpr φ x SubGrp G x = 1 x = 1
33 4 subg0cl x SubGrp G 0 G x
34 33 ad2antlr φ x SubGrp G x = 1 0 G x
35 vex x V
36 35 a1i φ x SubGrp G x = 1 x V
37 32 34 36 hash1elsn φ x SubGrp G x = 1 x = 0 G
38 37 orcd φ x SubGrp G x = 1 x = 0 G x = B
39 1 lagsubg x SubGrp G B Fin x B
40 25 39 sylan2 x SubGrp G φ x B
41 40 ancoms φ x SubGrp G x B
42 3 adantr φ x SubGrp G B
43 25 adantr φ x SubGrp G B Fin
44 27 adantl φ x SubGrp G x B
45 43 44 ssfid φ x SubGrp G x Fin
46 hashcl x Fin x 0
47 45 46 syl φ x SubGrp G x 0
48 33 adantl φ x SubGrp G 0 G x
49 35 a1i φ x SubGrp G x V
50 48 49 hashelne0d φ x SubGrp G ¬ x = 0
51 50 neqned φ x SubGrp G x 0
52 elnnne0 x x 0 x 0
53 47 51 52 sylanbrc φ x SubGrp G x
54 dvdsprime B x x B x = B x = 1
55 42 53 54 syl2anc φ x SubGrp G x B x = B x = 1
56 41 55 mpbid φ x SubGrp G x = B x = 1
57 31 38 56 mpjaodan φ x SubGrp G x = 0 G x = B
58 16 57 sylan2 φ x NrmSGrp G x = 0 G x = B
59 1 4 2 15 58 2nsgsimpgd φ G SimpGrp