Metamath Proof Explorer


Theorem projf1o

Description: A biijection from a set to a projection in a two dimensional space. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses projf1o.1 φAV
projf1o.2 F=xBAx
Assertion projf1o φF:B1-1 ontoA×B

Proof

Step Hyp Ref Expression
1 projf1o.1 φAV
2 projf1o.2 F=xBAx
3 snidg AVAA
4 1 3 syl φAA
5 4 adantr φyBAA
6 simpr φyByB
7 5 6 opelxpd φyBAyA×B
8 opeq2 x=yAx=Ay
9 8 cbvmptv xBAx=yBAy
10 2 9 eqtri F=yBAy
11 7 10 fmptd φF:BA×B
12 simpl1 φyBzBFy=Fzφ
13 2 8 6 7 fvmptd3 φyBFy=Ay
14 13 eqcomd φyBAy=Fy
15 14 3adant3 φyBzBAy=Fy
16 15 adantr φyBzBFy=FzAy=Fy
17 simpr φyBzBFy=FzFy=Fz
18 opeq2 y=zAy=Az
19 simpr φzBzB
20 opex AzV
21 20 a1i φzBAzV
22 10 18 19 21 fvmptd3 φzBFz=Az
23 22 3adant2 φyBzBFz=Az
24 23 adantr φyBzBFy=FzFz=Az
25 16 17 24 3eqtrd φyBzBFy=FzAy=Az
26 vex zV
27 26 a1i φzV
28 opthg2 AVzVAy=AzA=Ay=z
29 1 27 28 syl2anc φAy=AzA=Ay=z
30 29 simplbda φAy=Azy=z
31 12 25 30 syl2anc φyBzBFy=Fzy=z
32 31 ex φyBzBFy=Fzy=z
33 32 3expb φyBzBFy=Fzy=z
34 33 ralrimivva φyBzBFy=Fzy=z
35 dff13 F:B1-1A×BF:BA×ByBzBFy=Fzy=z
36 11 34 35 sylanbrc φF:B1-1A×B
37 elsnxp AVzA×ByBz=Ay
38 1 37 syl φzA×ByBz=Ay
39 38 biimpa φzA×ByBz=Ay
40 13 adantr φyBz=AyFy=Ay
41 id z=Ayz=Ay
42 41 eqcomd z=AyAy=z
43 42 adantl φyBz=AyAy=z
44 40 43 eqtr2d φyBz=Ayz=Fy
45 44 ex φyBz=Ayz=Fy
46 45 adantlr φzA×ByBz=Ayz=Fy
47 46 reximdva φzA×ByBz=AyyBz=Fy
48 39 47 mpd φzA×ByBz=Fy
49 48 ralrimiva φzA×ByBz=Fy
50 dffo3 F:BontoA×BF:BA×BzA×ByBz=Fy
51 11 49 50 sylanbrc φF:BontoA×B
52 df-f1o F:B1-1 ontoA×BF:B1-1A×BF:BontoA×B
53 36 51 52 sylanbrc φF:B1-1 ontoA×B