Description: A biijection from a set to a projection in a two dimensional space. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | projf1o.1 | |
|
projf1o.2 | |
||
Assertion | projf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | projf1o.1 | |
|
2 | projf1o.2 | |
|
3 | snidg | |
|
4 | 1 3 | syl | |
5 | 4 | adantr | |
6 | simpr | |
|
7 | 5 6 | opelxpd | |
8 | opeq2 | |
|
9 | 8 | cbvmptv | |
10 | 2 9 | eqtri | |
11 | 7 10 | fmptd | |
12 | simpl1 | |
|
13 | 2 8 6 7 | fvmptd3 | |
14 | 13 | eqcomd | |
15 | 14 | 3adant3 | |
16 | 15 | adantr | |
17 | simpr | |
|
18 | opeq2 | |
|
19 | simpr | |
|
20 | opex | |
|
21 | 20 | a1i | |
22 | 10 18 19 21 | fvmptd3 | |
23 | 22 | 3adant2 | |
24 | 23 | adantr | |
25 | 16 17 24 | 3eqtrd | |
26 | vex | |
|
27 | 26 | a1i | |
28 | opthg2 | |
|
29 | 1 27 28 | syl2anc | |
30 | 29 | simplbda | |
31 | 12 25 30 | syl2anc | |
32 | 31 | ex | |
33 | 32 | 3expb | |
34 | 33 | ralrimivva | |
35 | dff13 | |
|
36 | 11 34 35 | sylanbrc | |
37 | elsnxp | |
|
38 | 1 37 | syl | |
39 | 38 | biimpa | |
40 | 13 | adantr | |
41 | id | |
|
42 | 41 | eqcomd | |
43 | 42 | adantl | |
44 | 40 43 | eqtr2d | |
45 | 44 | ex | |
46 | 45 | adantlr | |
47 | 46 | reximdva | |
48 | 39 47 | mpd | |
49 | 48 | ralrimiva | |
50 | dffo3 | |
|
51 | 11 49 50 | sylanbrc | |
52 | df-f1o | |
|
53 | 36 51 52 | sylanbrc | |