Metamath Proof Explorer


Theorem psgnfval

Description: Function definition of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgnfval.g G=SymGrpD
psgnfval.b B=BaseG
psgnfval.f F=pB|dompIFin
psgnfval.t T=ranpmTrspD
psgnfval.n N=pmSgnD
Assertion psgnfval N=xFιs|wWordTx=Gws=1w

Proof

Step Hyp Ref Expression
1 psgnfval.g G=SymGrpD
2 psgnfval.b B=BaseG
3 psgnfval.f F=pB|dompIFin
4 psgnfval.t T=ranpmTrspD
5 psgnfval.n N=pmSgnD
6 fveq2 d=DSymGrpd=SymGrpD
7 6 1 eqtr4di d=DSymGrpd=G
8 7 fveq2d d=DBaseSymGrpd=BaseG
9 8 2 eqtr4di d=DBaseSymGrpd=B
10 rabeq BaseSymGrpd=BpBaseSymGrpd|dompIFin=pB|dompIFin
11 9 10 syl d=DpBaseSymGrpd|dompIFin=pB|dompIFin
12 11 3 eqtr4di d=DpBaseSymGrpd|dompIFin=F
13 fveq2 d=DpmTrspd=pmTrspD
14 13 rneqd d=DranpmTrspd=ranpmTrspD
15 14 4 eqtr4di d=DranpmTrspd=T
16 wrdeq ranpmTrspd=TWordranpmTrspd=WordT
17 15 16 syl d=DWordranpmTrspd=WordT
18 7 oveq1d d=DSymGrpdw=Gw
19 18 eqeq2d d=Dx=SymGrpdwx=Gw
20 19 anbi1d d=Dx=SymGrpdws=1wx=Gws=1w
21 17 20 rexeqbidv d=DwWordranpmTrspdx=SymGrpdws=1wwWordTx=Gws=1w
22 21 iotabidv d=Dιs|wWordranpmTrspdx=SymGrpdws=1w=ιs|wWordTx=Gws=1w
23 12 22 mpteq12dv d=DxpBaseSymGrpd|dompIFinιs|wWordranpmTrspdx=SymGrpdws=1w=xFιs|wWordTx=Gws=1w
24 df-psgn pmSgn=dVxpBaseSymGrpd|dompIFinιs|wWordranpmTrspdx=SymGrpdws=1w
25 2 fvexi BV
26 3 25 rabex2 FV
27 26 mptex xFιs|wWordTx=Gws=1wV
28 23 24 27 fvmpt DVpmSgnD=xFιs|wWordTx=Gws=1w
29 fvprc ¬DVpmSgnD=
30 fvprc ¬DVSymGrpD=
31 1 30 eqtrid ¬DVG=
32 31 fveq2d ¬DVBaseG=Base
33 base0 =Base
34 32 33 eqtr4di ¬DVBaseG=
35 2 34 eqtrid ¬DVB=
36 rabeq B=pB|dompIFin=p|dompIFin
37 35 36 syl ¬DVpB|dompIFin=p|dompIFin
38 rab0 p|dompIFin=
39 37 38 eqtrdi ¬DVpB|dompIFin=
40 3 39 eqtrid ¬DVF=
41 40 mpteq1d ¬DVxFιs|wWordTx=Gws=1w=xιs|wWordTx=Gws=1w
42 mpt0 xιs|wWordTx=Gws=1w=
43 41 42 eqtrdi ¬DVxFιs|wWordTx=Gws=1w=
44 29 43 eqtr4d ¬DVpmSgnD=xFιs|wWordTx=Gws=1w
45 28 44 pm2.61i pmSgnD=xFιs|wWordTx=Gws=1w
46 5 45 eqtri N=xFιs|wWordTx=Gws=1w