Metamath Proof Explorer


Theorem psmeasurelem

Description: M applied to a disjoint union of subsets of its domain is the sum of M applied to such subset. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses psmeasurelem.x φXV
psmeasurelem.h φH:X0+∞
psmeasurelem.m M=x𝒫Xsum^Hx
psmeasurelem.mf φM:𝒫X0+∞
psmeasurelem.y φY𝒫X
psmeasurelem.dj φDisjyYy
Assertion psmeasurelem φMY=sum^MY

Proof

Step Hyp Ref Expression
1 psmeasurelem.x φXV
2 psmeasurelem.h φH:X0+∞
3 psmeasurelem.m M=x𝒫Xsum^Hx
4 psmeasurelem.mf φM:𝒫X0+∞
5 psmeasurelem.y φY𝒫X
6 psmeasurelem.dj φDisjyYy
7 1 pwexd φ𝒫XV
8 ssexg Y𝒫X𝒫XVYV
9 5 7 8 syl2anc φYV
10 simpr φyYyY
11 uniiun Y=yYy
12 elpwg YVY𝒫𝒫XY𝒫X
13 9 12 syl φY𝒫𝒫XY𝒫X
14 5 13 mpbird φY𝒫𝒫X
15 pwpwuni YVY𝒫𝒫XY𝒫X
16 9 15 syl φY𝒫𝒫XY𝒫X
17 14 16 mpbid φY𝒫X
18 17 elpwid φYX
19 2 18 fssresd φHY:Y0+∞
20 9 10 11 19 6 sge0iun φsum^HY=sum^yYsum^HYy
21 reseq2 x=YHx=HY
22 21 fveq2d x=Ysum^Hx=sum^HY
23 fvexd φsum^HYV
24 3 22 17 23 fvmptd3 φMY=sum^HY
25 4 5 fssresd φMY:Y0+∞
26 25 feqmptd φMY=yYMYy
27 fvres yYMYy=My
28 10 27 syl φyYMYy=My
29 reseq2 x=yHx=Hy
30 29 fveq2d x=ysum^Hx=sum^Hy
31 5 sselda φyYy𝒫X
32 fvexd φyYsum^HyV
33 3 30 31 32 fvmptd3 φyYMy=sum^Hy
34 elssuni yYyY
35 resabs1 yYHYy=Hy
36 34 35 syl yYHYy=Hy
37 36 eqcomd yYHy=HYy
38 37 adantl φyYHy=HYy
39 38 fveq2d φyYsum^Hy=sum^HYy
40 28 33 39 3eqtrd φyYMYy=sum^HYy
41 40 mpteq2dva φyYMYy=yYsum^HYy
42 26 41 eqtrd φMY=yYsum^HYy
43 42 fveq2d φsum^MY=sum^yYsum^HYy
44 20 24 43 3eqtr4d φMY=sum^MY