Metamath Proof Explorer


Theorem psrbagev1OLD

Description: Obsolete version of psrbagev1 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 18-Jul-2019) (Revised by AV, 11-Apr-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses psrbagev1.d D=h0I|h-1Fin
psrbagev1.c C=BaseT
psrbagev1.x ·˙=T
psrbagev1.z 0˙=0T
psrbagev1.t φTCMnd
psrbagev1.b φBD
psrbagev1.g φG:IC
psrbagev1.i φIW
Assertion psrbagev1OLD φB·˙fG:ICfinSupp0˙B·˙fG

Proof

Step Hyp Ref Expression
1 psrbagev1.d D=h0I|h-1Fin
2 psrbagev1.c C=BaseT
3 psrbagev1.x ·˙=T
4 psrbagev1.z 0˙=0T
5 psrbagev1.t φTCMnd
6 psrbagev1.b φBD
7 psrbagev1.g φG:IC
8 psrbagev1.i φIW
9 5 cmnmndd φTMnd
10 2 3 mulgnn0cl TMndy0zCy·˙zC
11 10 3expb TMndy0zCy·˙zC
12 9 11 sylan φy0zCy·˙zC
13 1 psrbagfOLD IWBDB:I0
14 8 6 13 syl2anc φB:I0
15 inidm II=I
16 12 14 7 8 8 15 off φB·˙fG:IC
17 ovexd φB·˙fGV
18 14 ffnd φBFnI
19 7 ffnd φGFnI
20 18 19 8 8 offun φFunB·˙fG
21 4 fvexi 0˙V
22 21 a1i φ0˙V
23 1 psrbagfsuppOLD BDIWfinSupp0B
24 6 8 23 syl2anc φfinSupp0B
25 24 fsuppimpd φBsupp0Fin
26 ssidd φBsupp0Bsupp0
27 2 4 3 mulg0 zC0·˙z=0˙
28 27 adantl φzC0·˙z=0˙
29 c0ex 0V
30 29 a1i φ0V
31 26 28 14 7 8 30 suppssof1 φB·˙fGsupp0˙Bsupp0
32 suppssfifsupp B·˙fGVFunB·˙fG0˙VBsupp0FinB·˙fGsupp0˙Bsupp0finSupp0˙B·˙fG
33 17 20 22 25 31 32 syl32anc φfinSupp0˙B·˙fG
34 16 33 jca φB·˙fG:ICfinSupp0˙B·˙fG