Metamath Proof Explorer


Theorem psrvscafval

Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015) (Proof shortened by AV, 2-Nov-2024)

Ref Expression
Hypotheses psrvsca.s S=ImPwSerR
psrvsca.n ˙=S
psrvsca.k K=BaseR
psrvsca.b B=BaseS
psrvsca.m ·˙=R
psrvsca.d D=h0I|h-1Fin
Assertion psrvscafval ˙=xK,fBD×x·˙ff

Proof

Step Hyp Ref Expression
1 psrvsca.s S=ImPwSerR
2 psrvsca.n ˙=S
3 psrvsca.k K=BaseR
4 psrvsca.b B=BaseS
5 psrvsca.m ·˙=R
6 psrvsca.d D=h0I|h-1Fin
7 eqid +R=+R
8 eqid TopOpenR=TopOpenR
9 simpl IVRVIV
10 1 3 6 4 9 psrbas IVRVB=KD
11 eqid +S=+S
12 1 4 7 11 psrplusg +S=f+RB×B
13 eqid S=S
14 1 4 5 13 6 psrmulr S=fB,gBkDRxyD|yfkfx·˙gkfx
15 eqid xK,fBD×x·˙ff=xK,fBD×x·˙ff
16 eqidd IVRV𝑡D×TopOpenR=𝑡D×TopOpenR
17 simpr IVRVRV
18 1 3 7 5 8 6 10 12 14 15 16 9 17 psrval IVRVS=BasendxB+ndx+SndxSScalarndxRndxxK,fBD×x·˙ffTopSetndx𝑡D×TopOpenR
19 18 fveq2d IVRVS=BasendxB+ndx+SndxSScalarndxRndxxK,fBD×x·˙ffTopSetndx𝑡D×TopOpenR
20 3 fvexi KV
21 4 fvexi BV
22 20 21 mpoex xK,fBD×x·˙ffV
23 psrvalstr BasendxB+ndx+SndxSScalarndxRndxxK,fBD×x·˙ffTopSetndx𝑡D×TopOpenRStruct19
24 vscaid 𝑠=Slotndx
25 snsstp2 ndxxK,fBD×x·˙ffScalarndxRndxxK,fBD×x·˙ffTopSetndx𝑡D×TopOpenR
26 ssun2 ScalarndxRndxxK,fBD×x·˙ffTopSetndx𝑡D×TopOpenRBasendxB+ndx+SndxSScalarndxRndxxK,fBD×x·˙ffTopSetndx𝑡D×TopOpenR
27 25 26 sstri ndxxK,fBD×x·˙ffBasendxB+ndx+SndxSScalarndxRndxxK,fBD×x·˙ffTopSetndx𝑡D×TopOpenR
28 23 24 27 strfv xK,fBD×x·˙ffVxK,fBD×x·˙ff=BasendxB+ndx+SndxSScalarndxRndxxK,fBD×x·˙ffTopSetndx𝑡D×TopOpenR
29 22 28 ax-mp xK,fBD×x·˙ff=BasendxB+ndx+SndxSScalarndxRndxxK,fBD×x·˙ffTopSetndx𝑡D×TopOpenR
30 19 2 29 3eqtr4g IVRV˙=xK,fBD×x·˙ff
31 eqid =
32 fn0 Fn=
33 31 32 mpbir Fn
34 reldmpsr ReldommPwSer
35 34 ovprc ¬IVRVImPwSerR=
36 1 35 eqtrid ¬IVRVS=
37 36 fveq2d ¬IVRVS=
38 24 str0 =
39 37 2 38 3eqtr4g ¬IVRV˙=
40 34 1 4 elbasov fBIVRV
41 40 con3i ¬IVRV¬fB
42 41 eq0rdv ¬IVRVB=
43 42 xpeq2d ¬IVRVK×B=K×
44 xp0 K×=
45 43 44 eqtrdi ¬IVRVK×B=
46 39 45 fneq12d ¬IVRV˙FnK×BFn
47 33 46 mpbiri ¬IVRV˙FnK×B
48 fnov ˙FnK×B˙=xK,fBx˙f
49 47 48 sylib ¬IVRV˙=xK,fBx˙f
50 41 pm2.21d ¬IVRVfBD×x·˙ff=x˙f
51 50 a1d ¬IVRVxKfBD×x·˙ff=x˙f
52 51 3imp ¬IVRVxKfBD×x·˙ff=x˙f
53 52 mpoeq3dva ¬IVRVxK,fBD×x·˙ff=xK,fBx˙f
54 49 53 eqtr4d ¬IVRV˙=xK,fBD×x·˙ff
55 30 54 pm2.61i ˙=xK,fBD×x·˙ff