Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pwsdiaglmhm.y | |
|
pwsdiaglmhm.b | |
||
pwsdiaglmhm.f | |
||
Assertion | pwsdiaglmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsdiaglmhm.y | |
|
2 | pwsdiaglmhm.b | |
|
3 | pwsdiaglmhm.f | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | simpl | |
|
10 | 1 | pwslmod | |
11 | 1 6 | pwssca | |
12 | 11 | eqcomd | |
13 | lmodgrp | |
|
14 | 1 2 3 | pwsdiagghm | |
15 | 13 14 | sylan | |
16 | simplr | |
|
17 | 2 6 4 8 | lmodvscl | |
18 | 17 | 3expb | |
19 | 18 | adantlr | |
20 | 3 | fvdiagfn | |
21 | 16 19 20 | syl2anc | |
22 | 3 | fvdiagfn | |
23 | 22 | ad2ant2l | |
24 | 23 | oveq2d | |
25 | eqid | |
|
26 | simpll | |
|
27 | simprl | |
|
28 | 1 2 25 | pwsdiagel | |
29 | 28 | adantrl | |
30 | 1 25 4 5 6 8 26 16 27 29 | pwsvscafval | |
31 | id | |
|
32 | vex | |
|
33 | 32 | a1i | |
34 | vex | |
|
35 | 34 | a1i | |
36 | 31 33 35 | ofc12 | |
37 | 36 | ad2antlr | |
38 | 24 30 37 | 3eqtrd | |
39 | 21 38 | eqtr4d | |
40 | 2 4 5 6 7 8 9 10 12 15 39 | islmhmd | |