Metamath Proof Explorer


Theorem pwsdiaglmhm

Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwsdiaglmhm.y Y = R 𝑠 I
pwsdiaglmhm.b B = Base R
pwsdiaglmhm.f F = x B I × x
Assertion pwsdiaglmhm R LMod I W F R LMHom Y

Proof

Step Hyp Ref Expression
1 pwsdiaglmhm.y Y = R 𝑠 I
2 pwsdiaglmhm.b B = Base R
3 pwsdiaglmhm.f F = x B I × x
4 eqid R = R
5 eqid Y = Y
6 eqid Scalar R = Scalar R
7 eqid Scalar Y = Scalar Y
8 eqid Base Scalar R = Base Scalar R
9 simpl R LMod I W R LMod
10 1 pwslmod R LMod I W Y LMod
11 1 6 pwssca R LMod I W Scalar R = Scalar Y
12 11 eqcomd R LMod I W Scalar Y = Scalar R
13 lmodgrp R LMod R Grp
14 1 2 3 pwsdiagghm R Grp I W F R GrpHom Y
15 13 14 sylan R LMod I W F R GrpHom Y
16 simplr R LMod I W a Base Scalar R b B I W
17 2 6 4 8 lmodvscl R LMod a Base Scalar R b B a R b B
18 17 3expb R LMod a Base Scalar R b B a R b B
19 18 adantlr R LMod I W a Base Scalar R b B a R b B
20 3 fvdiagfn I W a R b B F a R b = I × a R b
21 16 19 20 syl2anc R LMod I W a Base Scalar R b B F a R b = I × a R b
22 3 fvdiagfn I W b B F b = I × b
23 22 ad2ant2l R LMod I W a Base Scalar R b B F b = I × b
24 23 oveq2d R LMod I W a Base Scalar R b B a Y F b = a Y I × b
25 eqid Base Y = Base Y
26 simpll R LMod I W a Base Scalar R b B R LMod
27 simprl R LMod I W a Base Scalar R b B a Base Scalar R
28 1 2 25 pwsdiagel R LMod I W b B I × b Base Y
29 28 adantrl R LMod I W a Base Scalar R b B I × b Base Y
30 1 25 4 5 6 8 26 16 27 29 pwsvscafval R LMod I W a Base Scalar R b B a Y I × b = I × a R f I × b
31 id I W I W
32 vex a V
33 32 a1i I W a V
34 vex b V
35 34 a1i I W b V
36 31 33 35 ofc12 I W I × a R f I × b = I × a R b
37 36 ad2antlr R LMod I W a Base Scalar R b B I × a R f I × b = I × a R b
38 24 30 37 3eqtrd R LMod I W a Base Scalar R b B a Y F b = I × a R b
39 21 38 eqtr4d R LMod I W a Base Scalar R b B F a R b = a Y F b
40 2 4 5 6 7 8 9 10 12 15 39 islmhmd R LMod I W F R LMHom Y