Metamath Proof Explorer


Theorem pwsdiaglmhm

Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwsdiaglmhm.y Y=R𝑠I
pwsdiaglmhm.b B=BaseR
pwsdiaglmhm.f F=xBI×x
Assertion pwsdiaglmhm RLModIWFRLMHomY

Proof

Step Hyp Ref Expression
1 pwsdiaglmhm.y Y=R𝑠I
2 pwsdiaglmhm.b B=BaseR
3 pwsdiaglmhm.f F=xBI×x
4 eqid R=R
5 eqid Y=Y
6 eqid ScalarR=ScalarR
7 eqid ScalarY=ScalarY
8 eqid BaseScalarR=BaseScalarR
9 simpl RLModIWRLMod
10 1 pwslmod RLModIWYLMod
11 1 6 pwssca RLModIWScalarR=ScalarY
12 11 eqcomd RLModIWScalarY=ScalarR
13 lmodgrp RLModRGrp
14 1 2 3 pwsdiagghm RGrpIWFRGrpHomY
15 13 14 sylan RLModIWFRGrpHomY
16 simplr RLModIWaBaseScalarRbBIW
17 2 6 4 8 lmodvscl RLModaBaseScalarRbBaRbB
18 17 3expb RLModaBaseScalarRbBaRbB
19 18 adantlr RLModIWaBaseScalarRbBaRbB
20 3 fvdiagfn IWaRbBFaRb=I×aRb
21 16 19 20 syl2anc RLModIWaBaseScalarRbBFaRb=I×aRb
22 3 fvdiagfn IWbBFb=I×b
23 22 ad2ant2l RLModIWaBaseScalarRbBFb=I×b
24 23 oveq2d RLModIWaBaseScalarRbBaYFb=aYI×b
25 eqid BaseY=BaseY
26 simpll RLModIWaBaseScalarRbBRLMod
27 simprl RLModIWaBaseScalarRbBaBaseScalarR
28 1 2 25 pwsdiagel RLModIWbBI×bBaseY
29 28 adantrl RLModIWaBaseScalarRbBI×bBaseY
30 1 25 4 5 6 8 26 16 27 29 pwsvscafval RLModIWaBaseScalarRbBaYI×b=I×aRfI×b
31 id IWIW
32 vex aV
33 32 a1i IWaV
34 vex bV
35 34 a1i IWbV
36 31 33 35 ofc12 IWI×aRfI×b=I×aRb
37 36 ad2antlr RLModIWaBaseScalarRbBI×aRfI×b=I×aRb
38 24 30 37 3eqtrd RLModIWaBaseScalarRbBaYFb=I×aRb
39 21 38 eqtr4d RLModIWaBaseScalarRbBFaRb=aYFb
40 2 4 5 6 7 8 9 10 12 15 39 islmhmd RLModIWFRLMHomY