Metamath Proof Explorer


Theorem q1pdir

Description: Distribution of univariate polynomial quotient over addition. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses r1padd1.p P=Poly1R
r1padd1.u U=BaseP
r1padd1.n N=Unic1pR
q1pdir.d ×˙=quot1pR
q1pdir.r φRRing
q1pdir.a φAU
q1pdir.c φCN
q1pdir.b φBU
q1pdir.1 +˙=+P
Assertion q1pdir φA+˙B×˙C=A×˙C+˙B×˙C

Proof

Step Hyp Ref Expression
1 r1padd1.p P=Poly1R
2 r1padd1.u U=BaseP
3 r1padd1.n N=Unic1pR
4 q1pdir.d ×˙=quot1pR
5 q1pdir.r φRRing
6 q1pdir.a φAU
7 q1pdir.c φCN
8 q1pdir.b φBU
9 q1pdir.1 +˙=+P
10 1 ply1ring RRingPRing
11 5 10 syl φPRing
12 11 ringgrpd φPGrp
13 2 9 12 6 8 grpcld φA+˙BU
14 4 1 2 3 q1pcl RRingAUCNA×˙CU
15 5 6 7 14 syl3anc φA×˙CU
16 4 1 2 3 q1pcl RRingBUCNB×˙CU
17 5 8 7 16 syl3anc φB×˙CU
18 2 9 12 15 17 grpcld φA×˙C+˙B×˙CU
19 1 2 3 uc1pcl CNCU
20 7 19 syl φCU
21 eqid P=P
22 2 9 21 ringdir PRingA×˙CUB×˙CUCUA×˙C+˙B×˙CPC=A×˙CPC+˙B×˙CPC
23 11 15 17 20 22 syl13anc φA×˙C+˙B×˙CPC=A×˙CPC+˙B×˙CPC
24 23 oveq2d φA+˙B-PA×˙C+˙B×˙CPC=A+˙B-PA×˙CPC+˙B×˙CPC
25 11 ringabld φPAbel
26 2 21 11 15 20 ringcld φA×˙CPCU
27 2 21 11 17 20 ringcld φB×˙CPCU
28 eqid -P=-P
29 2 9 28 ablsub4 PAbelAUBUA×˙CPCUB×˙CPCUA+˙B-PA×˙CPC+˙B×˙CPC=A-PA×˙CPC+˙B-PB×˙CPC
30 25 6 8 26 27 29 syl122anc φA+˙B-PA×˙CPC+˙B×˙CPC=A-PA×˙CPC+˙B-PB×˙CPC
31 24 30 eqtrd φA+˙B-PA×˙C+˙B×˙CPC=A-PA×˙CPC+˙B-PB×˙CPC
32 31 fveq2d φdeg1RA+˙B-PA×˙C+˙B×˙CPC=deg1RA-PA×˙CPC+˙B-PB×˙CPC
33 eqid deg1R=deg1R
34 eqid rem1pR=rem1pR
35 34 1 2 4 21 28 r1pval AUCUArem1pRC=A-PA×˙CPC
36 6 20 35 syl2anc φArem1pRC=A-PA×˙CPC
37 34 1 2 3 r1pcl RRingAUCNArem1pRCU
38 5 6 7 37 syl3anc φArem1pRCU
39 36 38 eqeltrrd φA-PA×˙CPCU
40 34 1 2 4 21 28 r1pval BUCUBrem1pRC=B-PB×˙CPC
41 8 20 40 syl2anc φBrem1pRC=B-PB×˙CPC
42 34 1 2 3 r1pcl RRingBUCNBrem1pRCU
43 5 8 7 42 syl3anc φBrem1pRCU
44 41 43 eqeltrrd φB-PB×˙CPCU
45 33 1 2 deg1xrcl CUdeg1RC*
46 20 45 syl φdeg1RC*
47 36 fveq2d φdeg1RArem1pRC=deg1RA-PA×˙CPC
48 34 1 2 3 33 r1pdeglt RRingAUCNdeg1RArem1pRC<deg1RC
49 5 6 7 48 syl3anc φdeg1RArem1pRC<deg1RC
50 47 49 eqbrtrrd φdeg1RA-PA×˙CPC<deg1RC
51 41 fveq2d φdeg1RBrem1pRC=deg1RB-PB×˙CPC
52 34 1 2 3 33 r1pdeglt RRingBUCNdeg1RBrem1pRC<deg1RC
53 5 8 7 52 syl3anc φdeg1RBrem1pRC<deg1RC
54 51 53 eqbrtrrd φdeg1RB-PB×˙CPC<deg1RC
55 1 33 5 2 9 39 44 46 50 54 deg1addlt φdeg1RA-PA×˙CPC+˙B-PB×˙CPC<deg1RC
56 32 55 eqbrtrd φdeg1RA+˙B-PA×˙C+˙B×˙CPC<deg1RC
57 4 1 2 33 28 21 3 q1peqb RRingA+˙BUCNA×˙C+˙B×˙CUdeg1RA+˙B-PA×˙C+˙B×˙CPC<deg1RCA+˙B×˙C=A×˙C+˙B×˙C
58 57 biimpa RRingA+˙BUCNA×˙C+˙B×˙CUdeg1RA+˙B-PA×˙C+˙B×˙CPC<deg1RCA+˙B×˙C=A×˙C+˙B×˙C
59 5 13 7 18 56 58 syl32anc φA+˙B×˙C=A×˙C+˙B×˙C