Metamath Proof Explorer


Theorem q1peqb

Description: Characterizing property of the polynomial quotient. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses q1pval.q Q=quot1pR
q1pval.p P=Poly1R
q1pval.b B=BaseP
q1pval.d D=deg1R
q1pval.m -˙=-P
q1pval.t ·˙=P
q1peqb.c C=Unic1pR
Assertion q1peqb RRingFBGCXBDF-˙X·˙G<DGFQG=X

Proof

Step Hyp Ref Expression
1 q1pval.q Q=quot1pR
2 q1pval.p P=Poly1R
3 q1pval.b B=BaseP
4 q1pval.d D=deg1R
5 q1pval.m -˙=-P
6 q1pval.t ·˙=P
7 q1peqb.c C=Unic1pR
8 elex XBXV
9 8 adantr XBDF-˙X·˙G<DGXV
10 9 a1i RRingFBGCXBDF-˙X·˙G<DGXV
11 ovex FQGV
12 eleq1 FQG=XFQGVXV
13 11 12 mpbii FQG=XXV
14 13 a1i RRingFBGCFQG=XXV
15 simpr RRingFBGCXVXV
16 eqid 0P=0P
17 simp1 RRingFBGCRRing
18 simp2 RRingFBGCFB
19 2 3 7 uc1pcl GCGB
20 19 3ad2ant3 RRingFBGCGB
21 2 16 7 uc1pn0 GCG0P
22 21 3ad2ant3 RRingFBGCG0P
23 eqid UnitR=UnitR
24 4 23 7 uc1pldg GCcoe1GDGUnitR
25 24 3ad2ant3 RRingFBGCcoe1GDGUnitR
26 2 4 3 5 16 6 17 18 20 22 25 23 ply1divalg2 RRingFBGC∃!qBDF-˙q·˙G<DG
27 df-reu ∃!qBDF-˙q·˙G<DG∃!qqBDF-˙q·˙G<DG
28 26 27 sylib RRingFBGC∃!qqBDF-˙q·˙G<DG
29 28 adantr RRingFBGCXV∃!qqBDF-˙q·˙G<DG
30 eleq1 q=XqBXB
31 oveq1 q=Xq·˙G=X·˙G
32 31 oveq2d q=XF-˙q·˙G=F-˙X·˙G
33 32 fveq2d q=XDF-˙q·˙G=DF-˙X·˙G
34 33 breq1d q=XDF-˙q·˙G<DGDF-˙X·˙G<DG
35 30 34 anbi12d q=XqBDF-˙q·˙G<DGXBDF-˙X·˙G<DG
36 35 adantl RRingFBGCXVq=XqBDF-˙q·˙G<DGXBDF-˙X·˙G<DG
37 15 29 36 iota2d RRingFBGCXVXBDF-˙X·˙G<DGιq|qBDF-˙q·˙G<DG=X
38 1 2 3 4 5 6 q1pval FBGBFQG=ιqB|DF-˙q·˙G<DG
39 18 20 38 syl2anc RRingFBGCFQG=ιqB|DF-˙q·˙G<DG
40 df-riota ιqB|DF-˙q·˙G<DG=ιq|qBDF-˙q·˙G<DG
41 39 40 eqtrdi RRingFBGCFQG=ιq|qBDF-˙q·˙G<DG
42 41 adantr RRingFBGCXVFQG=ιq|qBDF-˙q·˙G<DG
43 42 eqeq1d RRingFBGCXVFQG=Xιq|qBDF-˙q·˙G<DG=X
44 37 43 bitr4d RRingFBGCXVXBDF-˙X·˙G<DGFQG=X
45 44 ex RRingFBGCXVXBDF-˙X·˙G<DGFQG=X
46 10 14 45 pm5.21ndd RRingFBGCXBDF-˙X·˙G<DGFQG=X