| Step | Hyp | Ref | Expression | 
						
							| 1 |  | quslmod.n |  | 
						
							| 2 |  | quslmod.v |  | 
						
							| 3 |  | quslmod.1 |  | 
						
							| 4 |  | quslmod.2 |  | 
						
							| 5 | 1 | a1i |  | 
						
							| 6 | 2 | a1i |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | ovexd |  | 
						
							| 9 | 5 6 7 8 3 | qusval |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 5 6 7 8 3 | quslem |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 | lsssubg |  | 
						
							| 17 | 3 4 16 | syl2anc |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 2 18 | eqger |  | 
						
							| 20 | 17 19 | syl |  | 
						
							| 21 | 2 | fvexi |  | 
						
							| 22 | 21 | a1i |  | 
						
							| 23 |  | lmodgrp |  | 
						
							| 24 | 3 23 | syl |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 |  | simprl |  | 
						
							| 27 |  | simprr |  | 
						
							| 28 | 2 11 | grpcl |  | 
						
							| 29 | 25 26 27 28 | syl3anc |  | 
						
							| 30 |  | lmodabl |  | 
						
							| 31 |  | ablnsg |  | 
						
							| 32 | 3 30 31 | 3syl |  | 
						
							| 33 | 17 32 | eleqtrrd |  | 
						
							| 34 | 2 18 11 | eqgcpbl |  | 
						
							| 35 | 33 34 | syl |  | 
						
							| 36 | 20 22 7 29 35 | ercpbl |  | 
						
							| 37 | 3 | adantr |  | 
						
							| 38 | 4 | adantr |  | 
						
							| 39 |  | simpr1 |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 |  | simpr2 |  | 
						
							| 42 |  | simpr3 |  | 
						
							| 43 | 2 18 10 12 37 38 39 1 40 7 41 42 | qusvscpbl |  | 
						
							| 44 | 9 2 10 11 12 13 14 36 43 3 | imaslmod |  |