Description: If G is a submodule in M , then N = M / G is a left module, called the quotient module of M by G . (Contributed by Thierry Arnoux, 18-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | quslmod.n | |
|
quslmod.v | |
||
quslmod.1 | |
||
quslmod.2 | |
||
Assertion | quslmod | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quslmod.n | |
|
2 | quslmod.v | |
|
3 | quslmod.1 | |
|
4 | quslmod.2 | |
|
5 | 1 | a1i | |
6 | 2 | a1i | |
7 | eqid | |
|
8 | ovexd | |
|
9 | 5 6 7 8 3 | qusval | |
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | 5 6 7 8 3 | quslem | |
15 | eqid | |
|
16 | 15 | lsssubg | |
17 | 3 4 16 | syl2anc | |
18 | eqid | |
|
19 | 2 18 | eqger | |
20 | 17 19 | syl | |
21 | 2 | fvexi | |
22 | 21 | a1i | |
23 | lmodgrp | |
|
24 | 3 23 | syl | |
25 | 24 | adantr | |
26 | simprl | |
|
27 | simprr | |
|
28 | 2 11 | grpcl | |
29 | 25 26 27 28 | syl3anc | |
30 | lmodabl | |
|
31 | ablnsg | |
|
32 | 3 30 31 | 3syl | |
33 | 17 32 | eleqtrrd | |
34 | 2 18 11 | eqgcpbl | |
35 | 33 34 | syl | |
36 | 20 22 7 29 35 | ercpbl | |
37 | 3 | adantr | |
38 | 4 | adantr | |
39 | simpr1 | |
|
40 | eqid | |
|
41 | simpr2 | |
|
42 | simpr3 | |
|
43 | 2 18 10 12 37 38 39 1 40 7 41 42 | qusvscpbl | |
44 | 9 2 10 11 12 13 14 36 43 3 | imaslmod | |