Metamath Proof Explorer


Theorem quslmod

Description: If G is a submodule in M , then N = M / G is a left module, called the quotient module of M by G . (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses quslmod.n N=M/𝑠M~QGG
quslmod.v V=BaseM
quslmod.1 φMLMod
quslmod.2 φGLSubSpM
Assertion quslmod φNLMod

Proof

Step Hyp Ref Expression
1 quslmod.n N=M/𝑠M~QGG
2 quslmod.v V=BaseM
3 quslmod.1 φMLMod
4 quslmod.2 φGLSubSpM
5 1 a1i φN=M/𝑠M~QGG
6 2 a1i φV=BaseM
7 eqid xVxM~QGG=xVxM~QGG
8 ovexd φM~QGGV
9 5 6 7 8 3 qusval φN=xVxM~QGG𝑠M
10 eqid BaseScalarM=BaseScalarM
11 eqid +M=+M
12 eqid M=M
13 eqid 0M=0M
14 5 6 7 8 3 quslem φxVxM~QGG:VontoV/M~QGG
15 eqid LSubSpM=LSubSpM
16 15 lsssubg MLModGLSubSpMGSubGrpM
17 3 4 16 syl2anc φGSubGrpM
18 eqid M~QGG=M~QGG
19 2 18 eqger GSubGrpMM~QGGErV
20 17 19 syl φM~QGGErV
21 2 fvexi VV
22 21 a1i φVV
23 lmodgrp MLModMGrp
24 3 23 syl φMGrp
25 24 adantr φpVqVMGrp
26 simprl φpVqVpV
27 simprr φpVqVqV
28 2 11 grpcl MGrppVqVp+MqV
29 25 26 27 28 syl3anc φpVqVp+MqV
30 lmodabl MLModMAbel
31 ablnsg MAbelNrmSGrpM=SubGrpM
32 3 30 31 3syl φNrmSGrpM=SubGrpM
33 17 32 eleqtrrd φGNrmSGrpM
34 2 18 11 eqgcpbl GNrmSGrpMaM~QGGpbM~QGGqa+MbM~QGGp+Mq
35 33 34 syl φaM~QGGpbM~QGGqa+MbM~QGGp+Mq
36 20 22 7 29 35 ercpbl φaVbVpVqVxVxM~QGGa=xVxM~QGGpxVxM~QGGb=xVxM~QGGqxVxM~QGGa+Mb=xVxM~QGGp+Mq
37 3 adantr φkBaseScalarMaVbVMLMod
38 4 adantr φkBaseScalarMaVbVGLSubSpM
39 simpr1 φkBaseScalarMaVbVkBaseScalarM
40 eqid N=N
41 simpr2 φkBaseScalarMaVbVaV
42 simpr3 φkBaseScalarMaVbVbV
43 2 18 10 12 37 38 39 1 40 7 41 42 qusvscpbl φkBaseScalarMaVbVxVxM~QGGa=xVxM~QGGbxVxM~QGGkMa=xVxM~QGGkMb
44 9 2 10 11 12 13 14 36 43 3 imaslmod φNLMod