Description: If S is a two-sided ideal in R , then the "natural map" from elements to their cosets is a ring homomorphism from R to R / S . (Contributed by Mario Carneiro, 15-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qusring.u | |
|
qusring.i | |
||
qusrhm.x | |
||
qusrhm.f | |
||
Assertion | qusrhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusring.u | |
|
2 | qusring.i | |
|
3 | qusrhm.x | |
|
4 | qusrhm.f | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | simpl | |
|
10 | 1 2 | qusring | |
11 | eqid | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | 11 12 13 2 | 2idlval | |
15 | 14 | elin2 | |
16 | 15 | simplbi | |
17 | 11 | lidlsubg | |
18 | 16 17 | sylan2 | |
19 | eqid | |
|
20 | 3 19 | eqger | |
21 | 18 20 | syl | |
22 | 3 | fvexi | |
23 | 22 | a1i | |
24 | 21 23 4 | divsfval | |
25 | 1 2 5 | qus1 | |
26 | 25 | simprd | |
27 | 24 26 | eqtrd | |
28 | 1 | a1i | |
29 | 3 | a1i | |
30 | 3 19 2 7 | 2idlcpbl | |
31 | 3 7 | ringcl | |
32 | 31 | 3expb | |
33 | 32 | adantlr | |
34 | 33 | caovclg | |
35 | 28 29 21 9 30 34 7 8 | qusmulval | |
36 | 35 | 3expb | |
37 | 21 | adantr | |
38 | 22 | a1i | |
39 | 37 38 4 | divsfval | |
40 | 37 38 4 | divsfval | |
41 | 39 40 | oveq12d | |
42 | 37 38 4 | divsfval | |
43 | 36 41 42 | 3eqtr4rd | |
44 | ringabl | |
|
45 | 44 | adantr | |
46 | ablnsg | |
|
47 | 45 46 | syl | |
48 | 18 47 | eleqtrrd | |
49 | 3 1 4 | qusghm | |
50 | 48 49 | syl | |
51 | 3 5 6 7 8 9 10 27 43 50 | isrhm2d | |