Metamath Proof Explorer


Theorem ramub1

Description: Inductive step for Ramsey's theorem, in the form of an explicit upper bound. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses ramub1.m φM
ramub1.r φRFin
ramub1.f φF:R
ramub1.g G=xRMRamseyyRify=xFx1Fy
ramub1.1 φG:R0
ramub1.2 φM1RamseyG0
Assertion ramub1 φMRamseyFM1RamseyG+1

Proof

Step Hyp Ref Expression
1 ramub1.m φM
2 ramub1.r φRFin
3 ramub1.f φF:R
4 ramub1.g G=xRMRamseyyRify=xFx1Fy
5 ramub1.1 φG:R0
6 ramub1.2 φM1RamseyG0
7 eqid aV,i0b𝒫a|b=i=aV,i0b𝒫a|b=i
8 1 nnnn0d φM0
9 nnssnn0 0
10 fss F:R0F:R0
11 3 9 10 sylancl φF:R0
12 peano2nn0 M1RamseyG0M1RamseyG+10
13 6 12 syl φM1RamseyG+10
14 simprl φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRs=M1RamseyG+1
15 6 adantr φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRM1RamseyG0
16 nn0p1nn M1RamseyG0M1RamseyG+1
17 15 16 syl φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRM1RamseyG+1
18 14 17 eqeltrd φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRs
19 18 nnnn0d φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRs0
20 hashclb sVsFins0
21 20 elv sFins0
22 19 21 sylibr φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRsFin
23 hashnncl sFinss
24 22 23 syl φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRss
25 18 24 mpbid φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRs
26 n0 swws
27 25 26 sylib φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRwws
28 1 adantr φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRwsM
29 2 adantr φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRwsRFin
30 3 adantr φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRwsF:R
31 5 adantr φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRwsG:R0
32 6 adantr φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRwsM1RamseyG0
33 22 adantrr φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRwssFin
34 simprll φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRwss=M1RamseyG+1
35 simprlr φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRwsf:saV,i0b𝒫a|b=iMR
36 simprr φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRwsws
37 uneq1 v=uvw=uw
38 37 fveq2d v=ufvw=fuw
39 38 cbvmptv vswaV,i0b𝒫a|b=iM1fvw=uswaV,i0b𝒫a|b=iM1fuw
40 28 29 30 4 31 32 7 33 34 35 36 39 ramub1lem2 φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRwscRz𝒫sFczzaV,i0b𝒫a|b=iMf-1c
41 40 expr φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRwscRz𝒫sFczzaV,i0b𝒫a|b=iMf-1c
42 41 exlimdv φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRwwscRz𝒫sFczzaV,i0b𝒫a|b=iMf-1c
43 27 42 mpd φs=M1RamseyG+1f:saV,i0b𝒫a|b=iMRcRz𝒫sFczzaV,i0b𝒫a|b=iMf-1c
44 7 8 2 11 13 43 ramub2 φMRamseyFM1RamseyG+1