Description: Inductive step for Ramsey's theorem, in the form of an explicit upper bound. (Contributed by Mario Carneiro, 23-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ramub1.m | |
|
ramub1.r | |
||
ramub1.f | |
||
ramub1.g | |
||
ramub1.1 | |
||
ramub1.2 | |
||
Assertion | ramub1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ramub1.m | |
|
2 | ramub1.r | |
|
3 | ramub1.f | |
|
4 | ramub1.g | |
|
5 | ramub1.1 | |
|
6 | ramub1.2 | |
|
7 | eqid | |
|
8 | 1 | nnnn0d | |
9 | nnssnn0 | |
|
10 | fss | |
|
11 | 3 9 10 | sylancl | |
12 | peano2nn0 | |
|
13 | 6 12 | syl | |
14 | simprl | |
|
15 | 6 | adantr | |
16 | nn0p1nn | |
|
17 | 15 16 | syl | |
18 | 14 17 | eqeltrd | |
19 | 18 | nnnn0d | |
20 | hashclb | |
|
21 | 20 | elv | |
22 | 19 21 | sylibr | |
23 | hashnncl | |
|
24 | 22 23 | syl | |
25 | 18 24 | mpbid | |
26 | n0 | |
|
27 | 25 26 | sylib | |
28 | 1 | adantr | |
29 | 2 | adantr | |
30 | 3 | adantr | |
31 | 5 | adantr | |
32 | 6 | adantr | |
33 | 22 | adantrr | |
34 | simprll | |
|
35 | simprlr | |
|
36 | simprr | |
|
37 | uneq1 | |
|
38 | 37 | fveq2d | |
39 | 38 | cbvmptv | |
40 | 28 29 30 4 31 32 7 33 34 35 36 39 | ramub1lem2 | |
41 | 40 | expr | |
42 | 41 | exlimdv | |
43 | 27 42 | mpd | |
44 | 7 8 2 11 13 43 | ramub2 | |