Metamath Proof Explorer


Theorem ramz

Description: The Ramsey number when F is the zero function. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Assertion ramz M0RVRMRamseyR×0=0

Proof

Step Hyp Ref Expression
1 elnn0 M0MM=0
2 n0 RccR
3 simpll MRVcRM
4 simplr MRVcRRV
5 0nn0 00
6 5 fconst6 R×0:R0
7 6 a1i MRVcRR×0:R0
8 simpr MRVcRcR
9 fvconst2g 00cRR×0c=0
10 5 8 9 sylancr MRVcRR×0c=0
11 ramz2 MRVR×0:R0cRR×0c=0MRamseyR×0=0
12 3 4 7 8 10 11 syl32anc MRVcRMRamseyR×0=0
13 12 ex MRVcRMRamseyR×0=0
14 13 exlimdv MRVccRMRamseyR×0=0
15 2 14 biimtrid MRVRMRamseyR×0=0
16 15 expimpd MRVRMRamseyR×0=0
17 simpl RVRRV
18 simpr RVRR
19 6 a1i RVRR×0:R0
20 0z 0
21 elsni y0y=0
22 0le0 00
23 21 22 eqbrtrdi y0y0
24 23 rgen y0y0
25 rnxp RranR×0=0
26 25 adantl RVRranR×0=0
27 26 raleqdv RVRyranR×0y0y0y0
28 24 27 mpbiri RVRyranR×0y0
29 brralrspcev 0yranR×0y0xyranR×0yx
30 20 28 29 sylancr RVRxyranR×0yx
31 0ram RVRR×0:R0xyranR×0yx0RamseyR×0=supranR×0<
32 17 18 19 30 31 syl31anc RVR0RamseyR×0=supranR×0<
33 26 supeq1d RVRsupranR×0<=sup0<
34 ltso <Or
35 0re 0
36 supsn <Or0sup0<=0
37 34 35 36 mp2an sup0<=0
38 37 a1i RVRsup0<=0
39 32 33 38 3eqtrd RVR0RamseyR×0=0
40 oveq1 M=0MRamseyR×0=0RamseyR×0
41 40 eqeq1d M=0MRamseyR×0=00RamseyR×0=0
42 39 41 imbitrrid M=0RVRMRamseyR×0=0
43 16 42 jaoi MM=0RVRMRamseyR×0=0
44 1 43 sylbi M0RVRMRamseyR×0=0
45 44 3impib M0RVRMRamseyR×0=0