Metamath Proof Explorer


Theorem rearchi

Description: The field of the real numbers is Archimedean. See also arch . (Contributed by Thierry Arnoux, 9-Apr-2018)

Ref Expression
Assertion rearchi fldArchi

Proof

Step Hyp Ref Expression
1 reofld fldoField
2 rebase =Basefld
3 eqid ℤRHomfld=ℤRHomfld
4 relt <=<fld
5 2 3 4 isarchiofld fldoFieldfldArchixnx<ℤRHomfldn
6 1 5 ax-mp fldArchixnx<ℤRHomfldn
7 arch xnx<n
8 nnz nn
9 refld fldField
10 isfld fldFieldfldDivRingfldCRing
11 10 simplbi fldFieldfldDivRing
12 drngring fldDivRingfldRing
13 9 11 12 mp2b fldRing
14 eqid fld=fld
15 re1r 1=1fld
16 3 14 15 zrhmulg fldRingnℤRHomfldn=nfld1
17 13 16 mpan nℤRHomfldn=nfld1
18 1re 1
19 remulg n1nfld1=n1
20 18 19 mpan2 nnfld1=n1
21 zcn nn
22 21 mulridd nn1=n
23 17 20 22 3eqtrd nℤRHomfldn=n
24 23 breq2d nx<ℤRHomfldnx<n
25 8 24 syl nx<ℤRHomfldnx<n
26 25 rexbiia nx<ℤRHomfldnnx<n
27 7 26 sylibr xnx<ℤRHomfldn
28 6 27 mprgbir fldArchi