Description: The field of the real numbers is Archimedean. See also arch . (Contributed by Thierry Arnoux, 9-Apr-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | rearchi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reofld | |
|
2 | rebase | |
|
3 | eqid | |
|
4 | relt | |
|
5 | 2 3 4 | isarchiofld | |
6 | 1 5 | ax-mp | |
7 | arch | |
|
8 | nnz | |
|
9 | refld | |
|
10 | isfld | |
|
11 | 10 | simplbi | |
12 | drngring | |
|
13 | 9 11 12 | mp2b | |
14 | eqid | |
|
15 | re1r | |
|
16 | 3 14 15 | zrhmulg | |
17 | 13 16 | mpan | |
18 | 1re | |
|
19 | remulg | |
|
20 | 18 19 | mpan2 | |
21 | zcn | |
|
22 | 21 | mulridd | |
23 | 17 20 22 | 3eqtrd | |
24 | 23 | breq2d | |
25 | 8 24 | syl | |
26 | 25 | rexbiia | |
27 | 7 26 | sylibr | |
28 | 6 27 | mprgbir | |