Metamath Proof Explorer


Theorem relexp01min

Description: With exponents limited to 0 and 1, the composition of powers of a relation is the relation raised to the minimum of exponents. (Contributed by RP, 12-Jun-2020)

Ref Expression
Assertion relexp01min RVI=ifJ<KJKJ01K01RrJrK=RrI

Proof

Step Hyp Ref Expression
1 elpri J01J=0J=1
2 elpri K01K=0K=1
3 dmresi domIdomRranR=domRranR
4 rnresi ranIdomRranR=domRranR
5 3 4 uneq12i domIdomRranRranIdomRranR=domRranRdomRranR
6 unidm domRranRdomRranR=domRranR
7 5 6 eqtri domIdomRranRranIdomRranR=domRranR
8 7 reseq2i IdomIdomRranRranIdomRranR=IdomRranR
9 simp1 J=0K=0RVI=ifJ<KJKJ=0
10 9 oveq2d J=0K=0RVI=ifJ<KJKRrJ=Rr0
11 simp3l J=0K=0RVI=ifJ<KJKRV
12 relexp0g RVRr0=IdomRranR
13 11 12 syl J=0K=0RVI=ifJ<KJKRr0=IdomRranR
14 10 13 eqtrd J=0K=0RVI=ifJ<KJKRrJ=IdomRranR
15 simp2 J=0K=0RVI=ifJ<KJKK=0
16 14 15 oveq12d J=0K=0RVI=ifJ<KJKRrJrK=IdomRranRr0
17 dmexg RVdomRV
18 rnexg RVranRV
19 17 18 unexd RVdomRranRV
20 19 resiexd RVIdomRranRV
21 relexp0g IdomRranRVIdomRranRr0=IdomIdomRranRranIdomRranR
22 11 20 21 3syl J=0K=0RVI=ifJ<KJKIdomRranRr0=IdomIdomRranRranIdomRranR
23 16 22 eqtrd J=0K=0RVI=ifJ<KJKRrJrK=IdomIdomRranRranIdomRranR
24 simp3r J=0K=0RVI=ifJ<KJKI=ifJ<KJK
25 0re 0
26 25 ltnri ¬0<0
27 9 15 breq12d J=0K=0RVI=ifJ<KJKJ<K0<0
28 26 27 mtbiri J=0K=0RVI=ifJ<KJK¬J<K
29 28 iffalsed J=0K=0RVI=ifJ<KJKifJ<KJK=K
30 24 29 15 3eqtrd J=0K=0RVI=ifJ<KJKI=0
31 30 oveq2d J=0K=0RVI=ifJ<KJKRrI=Rr0
32 31 13 eqtrd J=0K=0RVI=ifJ<KJKRrI=IdomRranR
33 8 23 32 3eqtr4a J=0K=0RVI=ifJ<KJKRrJrK=RrI
34 33 3exp J=0K=0RVI=ifJ<KJKRrJrK=RrI
35 simp1 J=1K=0RVI=ifJ<KJKJ=1
36 35 oveq2d J=1K=0RVI=ifJ<KJKRrJ=Rr1
37 simp3l J=1K=0RVI=ifJ<KJKRV
38 37 relexp1d J=1K=0RVI=ifJ<KJKRr1=R
39 36 38 eqtrd J=1K=0RVI=ifJ<KJKRrJ=R
40 simp2 J=1K=0RVI=ifJ<KJKK=0
41 39 40 oveq12d J=1K=0RVI=ifJ<KJKRrJrK=Rr0
42 simp3r J=1K=0RVI=ifJ<KJKI=ifJ<KJK
43 0lt1 0<1
44 1re 1
45 25 44 ltnsymi 0<1¬1<0
46 43 45 mp1i J=1K=0RVI=ifJ<KJK¬1<0
47 35 40 breq12d J=1K=0RVI=ifJ<KJKJ<K1<0
48 46 47 mtbird J=1K=0RVI=ifJ<KJK¬J<K
49 48 iffalsed J=1K=0RVI=ifJ<KJKifJ<KJK=K
50 42 49 40 3eqtrd J=1K=0RVI=ifJ<KJKI=0
51 50 oveq2d J=1K=0RVI=ifJ<KJKRrI=Rr0
52 41 51 eqtr4d J=1K=0RVI=ifJ<KJKRrJrK=RrI
53 52 3exp J=1K=0RVI=ifJ<KJKRrJrK=RrI
54 34 53 jaoi J=0J=1K=0RVI=ifJ<KJKRrJrK=RrI
55 ovex Rr0V
56 relexp1g Rr0VRr0r1=Rr0
57 55 56 mp1i J=0K=1RVI=ifJ<KJKRr0r1=Rr0
58 simp1 J=0K=1RVI=ifJ<KJKJ=0
59 58 oveq2d J=0K=1RVI=ifJ<KJKRrJ=Rr0
60 simp2 J=0K=1RVI=ifJ<KJKK=1
61 59 60 oveq12d J=0K=1RVI=ifJ<KJKRrJrK=Rr0r1
62 simp3r J=0K=1RVI=ifJ<KJKI=ifJ<KJK
63 58 60 breq12d J=0K=1RVI=ifJ<KJKJ<K0<1
64 43 63 mpbiri J=0K=1RVI=ifJ<KJKJ<K
65 64 iftrued J=0K=1RVI=ifJ<KJKifJ<KJK=J
66 62 65 58 3eqtrd J=0K=1RVI=ifJ<KJKI=0
67 66 oveq2d J=0K=1RVI=ifJ<KJKRrI=Rr0
68 57 61 67 3eqtr4d J=0K=1RVI=ifJ<KJKRrJrK=RrI
69 68 3exp J=0K=1RVI=ifJ<KJKRrJrK=RrI
70 simp1 J=1K=1RVI=ifJ<KJKJ=1
71 70 oveq2d J=1K=1RVI=ifJ<KJKRrJ=Rr1
72 simp3l J=1K=1RVI=ifJ<KJKRV
73 72 relexp1d J=1K=1RVI=ifJ<KJKRr1=R
74 71 73 eqtrd J=1K=1RVI=ifJ<KJKRrJ=R
75 simp2 J=1K=1RVI=ifJ<KJKK=1
76 74 75 oveq12d J=1K=1RVI=ifJ<KJKRrJrK=Rr1
77 simp3r J=1K=1RVI=ifJ<KJKI=ifJ<KJK
78 44 ltnri ¬1<1
79 70 75 breq12d J=1K=1RVI=ifJ<KJKJ<K1<1
80 78 79 mtbiri J=1K=1RVI=ifJ<KJK¬J<K
81 80 iffalsed J=1K=1RVI=ifJ<KJKifJ<KJK=K
82 77 81 75 3eqtrd J=1K=1RVI=ifJ<KJKI=1
83 82 oveq2d J=1K=1RVI=ifJ<KJKRrI=Rr1
84 76 83 eqtr4d J=1K=1RVI=ifJ<KJKRrJrK=RrI
85 84 3exp J=1K=1RVI=ifJ<KJKRrJrK=RrI
86 69 85 jaoi J=0J=1K=1RVI=ifJ<KJKRrJrK=RrI
87 54 86 jaod J=0J=1K=0K=1RVI=ifJ<KJKRrJrK=RrI
88 87 imp J=0J=1K=0K=1RVI=ifJ<KJKRrJrK=RrI
89 1 2 88 syl2an J01K01RVI=ifJ<KJKRrJrK=RrI
90 89 impcom RVI=ifJ<KJKJ01K01RrJrK=RrI