Metamath Proof Explorer


Theorem relexp0g

Description: A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020)

Ref Expression
Assertion relexp0g R V R r 0 = I dom R ran R

Proof

Step Hyp Ref Expression
1 eqidd R V r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n = r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n
2 simprr R V r = R n = 0 n = 0
3 2 iftrued R V r = R n = 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n = I dom r ran r
4 dmeq r = R dom r = dom R
5 rneq r = R ran r = ran R
6 4 5 uneq12d r = R dom r ran r = dom R ran R
7 6 reseq2d r = R I dom r ran r = I dom R ran R
8 7 ad2antrl R V r = R n = 0 I dom r ran r = I dom R ran R
9 3 8 eqtrd R V r = R n = 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n = I dom R ran R
10 elex R V R V
11 0nn0 0 0
12 11 a1i R V 0 0
13 dmexg R V dom R V
14 rnexg R V ran R V
15 unexg dom R V ran R V dom R ran R V
16 13 14 15 syl2anc R V dom R ran R V
17 resiexg dom R ran R V I dom R ran R V
18 16 17 syl R V I dom R ran R V
19 1 9 10 12 18 ovmpod R V R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n 0 = I dom R ran R
20 df-relexp r = r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n
21 oveq r = r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n R r 0 = R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n 0
22 21 eqeq1d r = r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n R r 0 = I dom R ran R R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n 0 = I dom R ran R
23 22 imbi2d r = r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n R V R r 0 = I dom R ran R R V R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n 0 = I dom R ran R
24 20 23 ax-mp R V R r 0 = I dom R ran R R V R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n 0 = I dom R ran R
25 19 24 mpbir R V R r 0 = I dom R ran R