Metamath Proof Explorer


Theorem relexp0g

Description: A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020)

Ref Expression
Assertion relexp0g RVRr0=IdomRranR

Proof

Step Hyp Ref Expression
1 eqidd RVrV,n0ifn=0Idomrranrseq1xV,yVxrzVrn=rV,n0ifn=0Idomrranrseq1xV,yVxrzVrn
2 simprr RVr=Rn=0n=0
3 2 iftrued RVr=Rn=0ifn=0Idomrranrseq1xV,yVxrzVrn=Idomrranr
4 dmeq r=Rdomr=domR
5 rneq r=Rranr=ranR
6 4 5 uneq12d r=Rdomrranr=domRranR
7 6 reseq2d r=RIdomrranr=IdomRranR
8 7 ad2antrl RVr=Rn=0Idomrranr=IdomRranR
9 3 8 eqtrd RVr=Rn=0ifn=0Idomrranrseq1xV,yVxrzVrn=IdomRranR
10 elex RVRV
11 0nn0 00
12 11 a1i RV00
13 dmexg RVdomRV
14 rnexg RVranRV
15 unexg domRVranRVdomRranRV
16 13 14 15 syl2anc RVdomRranRV
17 resiexg domRranRVIdomRranRV
18 16 17 syl RVIdomRranRV
19 1 9 10 12 18 ovmpod RVRrV,n0ifn=0Idomrranrseq1xV,yVxrzVrn0=IdomRranR
20 df-relexp r=rV,n0ifn=0Idomrranrseq1xV,yVxrzVrn
21 oveq r=rV,n0ifn=0Idomrranrseq1xV,yVxrzVrnRr0=RrV,n0ifn=0Idomrranrseq1xV,yVxrzVrn0
22 21 eqeq1d r=rV,n0ifn=0Idomrranrseq1xV,yVxrzVrnRr0=IdomRranRRrV,n0ifn=0Idomrranrseq1xV,yVxrzVrn0=IdomRranR
23 22 imbi2d r=rV,n0ifn=0Idomrranrseq1xV,yVxrzVrnRVRr0=IdomRranRRVRrV,n0ifn=0Idomrranrseq1xV,yVxrzVrn0=IdomRranR
24 20 23 ax-mp RVRr0=IdomRranRRVRrV,n0ifn=0Idomrranrseq1xV,yVxrzVrn0=IdomRranR
25 19 24 mpbir RVRr0=IdomRranR