Description: Relation composition becomes addition under exponentiation. (Contributed by RP, 23-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relexpaddnn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | coeq1d | |
3 | oveq1 | |
|
4 | 3 | oveq2d | |
5 | 2 4 | eqeq12d | |
6 | 5 | imbi2d | |
7 | oveq2 | |
|
8 | 7 | coeq1d | |
9 | oveq1 | |
|
10 | 9 | oveq2d | |
11 | 8 10 | eqeq12d | |
12 | 11 | imbi2d | |
13 | oveq2 | |
|
14 | 13 | coeq1d | |
15 | oveq1 | |
|
16 | 15 | oveq2d | |
17 | 14 16 | eqeq12d | |
18 | 17 | imbi2d | |
19 | oveq2 | |
|
20 | 19 | coeq1d | |
21 | oveq1 | |
|
22 | 21 | oveq2d | |
23 | 20 22 | eqeq12d | |
24 | 23 | imbi2d | |
25 | relexp1g | |
|
26 | 25 | adantl | |
27 | 26 | coeq1d | |
28 | relexpsucnnl | |
|
29 | 28 | ancoms | |
30 | simpl | |
|
31 | 30 | nncnd | |
32 | 1cnd | |
|
33 | 31 32 | addcomd | |
34 | 33 | oveq2d | |
35 | 27 29 34 | 3eqtr2d | |
36 | simp2r | |
|
37 | simp1 | |
|
38 | relexpsucnnl | |
|
39 | 36 37 38 | syl2anc | |
40 | 39 | coeq1d | |
41 | coass | |
|
42 | 40 41 | eqtrdi | |
43 | simp3 | |
|
44 | 43 | coeq2d | |
45 | 37 | nncnd | |
46 | 1cnd | |
|
47 | 31 | 3ad2ant2 | |
48 | 45 46 47 | add32d | |
49 | 48 | oveq2d | |
50 | 30 | 3ad2ant2 | |
51 | 37 50 | nnaddcld | |
52 | relexpsucnnl | |
|
53 | 36 51 52 | syl2anc | |
54 | 49 53 | eqtr2d | |
55 | 42 44 54 | 3eqtrd | |
56 | 55 | 3exp | |
57 | 56 | a2d | |
58 | 6 12 18 24 35 57 | nnind | |
59 | 58 | 3impib | |