Metamath Proof Explorer


Theorem relexpaddnn

Description: Relation composition becomes addition under exponentiation. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexpaddnn NMRVRrNRrM=RrN+M

Proof

Step Hyp Ref Expression
1 oveq2 n=1Rrn=Rr1
2 1 coeq1d n=1RrnRrM=Rr1RrM
3 oveq1 n=1n+M=1+M
4 3 oveq2d n=1Rrn+M=Rr1+M
5 2 4 eqeq12d n=1RrnRrM=Rrn+MRr1RrM=Rr1+M
6 5 imbi2d n=1MRVRrnRrM=Rrn+MMRVRr1RrM=Rr1+M
7 oveq2 n=kRrn=Rrk
8 7 coeq1d n=kRrnRrM=RrkRrM
9 oveq1 n=kn+M=k+M
10 9 oveq2d n=kRrn+M=Rrk+M
11 8 10 eqeq12d n=kRrnRrM=Rrn+MRrkRrM=Rrk+M
12 11 imbi2d n=kMRVRrnRrM=Rrn+MMRVRrkRrM=Rrk+M
13 oveq2 n=k+1Rrn=Rrk+1
14 13 coeq1d n=k+1RrnRrM=Rrk+1RrM
15 oveq1 n=k+1n+M=k+1+M
16 15 oveq2d n=k+1Rrn+M=Rrk+1+M
17 14 16 eqeq12d n=k+1RrnRrM=Rrn+MRrk+1RrM=Rrk+1+M
18 17 imbi2d n=k+1MRVRrnRrM=Rrn+MMRVRrk+1RrM=Rrk+1+M
19 oveq2 n=NRrn=RrN
20 19 coeq1d n=NRrnRrM=RrNRrM
21 oveq1 n=Nn+M=N+M
22 21 oveq2d n=NRrn+M=RrN+M
23 20 22 eqeq12d n=NRrnRrM=Rrn+MRrNRrM=RrN+M
24 23 imbi2d n=NMRVRrnRrM=Rrn+MMRVRrNRrM=RrN+M
25 relexp1g RVRr1=R
26 25 adantl MRVRr1=R
27 26 coeq1d MRVRr1RrM=RRrM
28 relexpsucnnl RVMRrM+1=RRrM
29 28 ancoms MRVRrM+1=RRrM
30 simpl MRVM
31 30 nncnd MRVM
32 1cnd MRV1
33 31 32 addcomd MRVM+1=1+M
34 33 oveq2d MRVRrM+1=Rr1+M
35 27 29 34 3eqtr2d MRVRr1RrM=Rr1+M
36 simp2r kMRVRrkRrM=Rrk+MRV
37 simp1 kMRVRrkRrM=Rrk+Mk
38 relexpsucnnl RVkRrk+1=RRrk
39 36 37 38 syl2anc kMRVRrkRrM=Rrk+MRrk+1=RRrk
40 39 coeq1d kMRVRrkRrM=Rrk+MRrk+1RrM=RRrkRrM
41 coass RRrkRrM=RRrkRrM
42 40 41 eqtrdi kMRVRrkRrM=Rrk+MRrk+1RrM=RRrkRrM
43 simp3 kMRVRrkRrM=Rrk+MRrkRrM=Rrk+M
44 43 coeq2d kMRVRrkRrM=Rrk+MRRrkRrM=RRrk+M
45 37 nncnd kMRVRrkRrM=Rrk+Mk
46 1cnd kMRVRrkRrM=Rrk+M1
47 31 3ad2ant2 kMRVRrkRrM=Rrk+MM
48 45 46 47 add32d kMRVRrkRrM=Rrk+Mk+1+M=k+M+1
49 48 oveq2d kMRVRrkRrM=Rrk+MRrk+1+M=Rrk+M+1
50 30 3ad2ant2 kMRVRrkRrM=Rrk+MM
51 37 50 nnaddcld kMRVRrkRrM=Rrk+Mk+M
52 relexpsucnnl RVk+MRrk+M+1=RRrk+M
53 36 51 52 syl2anc kMRVRrkRrM=Rrk+MRrk+M+1=RRrk+M
54 49 53 eqtr2d kMRVRrkRrM=Rrk+MRRrk+M=Rrk+1+M
55 42 44 54 3eqtrd kMRVRrkRrM=Rrk+MRrk+1RrM=Rrk+1+M
56 55 3exp kMRVRrkRrM=Rrk+MRrk+1RrM=Rrk+1+M
57 56 a2d kMRVRrkRrM=Rrk+MMRVRrk+1RrM=Rrk+1+M
58 6 12 18 24 35 57 nnind NMRVRrNRrM=RrN+M
59 58 3impib NMRVRrNRrM=RrN+M