Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
coeq1d |
|
3 |
|
oveq1 |
|
4 |
3
|
oveq2d |
|
5 |
2 4
|
eqeq12d |
|
6 |
5
|
imbi2d |
|
7 |
|
oveq2 |
|
8 |
7
|
coeq1d |
|
9 |
|
oveq1 |
|
10 |
9
|
oveq2d |
|
11 |
8 10
|
eqeq12d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq2 |
|
14 |
13
|
coeq1d |
|
15 |
|
oveq1 |
|
16 |
15
|
oveq2d |
|
17 |
14 16
|
eqeq12d |
|
18 |
17
|
imbi2d |
|
19 |
|
oveq2 |
|
20 |
19
|
coeq1d |
|
21 |
|
oveq1 |
|
22 |
21
|
oveq2d |
|
23 |
20 22
|
eqeq12d |
|
24 |
23
|
imbi2d |
|
25 |
|
relexp1g |
|
26 |
25
|
adantl |
|
27 |
26
|
coeq1d |
|
28 |
|
relexpsucnnl |
|
29 |
28
|
ancoms |
|
30 |
|
simpl |
|
31 |
30
|
nncnd |
|
32 |
|
1cnd |
|
33 |
31 32
|
addcomd |
|
34 |
33
|
oveq2d |
|
35 |
27 29 34
|
3eqtr2d |
|
36 |
|
simp2r |
|
37 |
|
simp1 |
|
38 |
|
relexpsucnnl |
|
39 |
36 37 38
|
syl2anc |
|
40 |
39
|
coeq1d |
|
41 |
|
coass |
|
42 |
40 41
|
eqtrdi |
|
43 |
|
simp3 |
|
44 |
43
|
coeq2d |
|
45 |
37
|
nncnd |
|
46 |
|
1cnd |
|
47 |
31
|
3ad2ant2 |
|
48 |
45 46 47
|
add32d |
|
49 |
48
|
oveq2d |
|
50 |
30
|
3ad2ant2 |
|
51 |
37 50
|
nnaddcld |
|
52 |
|
relexpsucnnl |
|
53 |
36 51 52
|
syl2anc |
|
54 |
49 53
|
eqtr2d |
|
55 |
42 44 54
|
3eqtrd |
|
56 |
55
|
3exp |
|
57 |
56
|
a2d |
|
58 |
6 12 18 24 35 57
|
nnind |
|
59 |
58
|
3impib |
|