Metamath Proof Explorer


Theorem rellysconn

Description: The real numbers are locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Assertion rellysconn topGen ran . Locally SConn

Proof

Step Hyp Ref Expression
1 retop topGen ran . Top
2 tg2 x topGen ran . y x z ran . y z z x
3 retopbas ran . TopBases
4 bastg ran . TopBases ran . topGen ran .
5 3 4 ax-mp ran . topGen ran .
6 simprl x topGen ran . y x z ran . y z z x z ran .
7 5 6 sselid x topGen ran . y x z ran . y z z x z topGen ran .
8 simprrr x topGen ran . y x z ran . y z z x z x
9 velpw z 𝒫 x z x
10 8 9 sylibr x topGen ran . y x z ran . y z z x z 𝒫 x
11 7 10 elind x topGen ran . y x z ran . y z z x z topGen ran . 𝒫 x
12 simprrl x topGen ran . y x z ran . y z z x y z
13 ioof . : * × * 𝒫
14 ffn . : * × * 𝒫 . Fn * × *
15 ovelrn . Fn * × * z ran . a * b * z = a b
16 13 14 15 mp2b z ran . a * b * z = a b
17 oveq2 z = a b topGen ran . 𝑡 z = topGen ran . 𝑡 a b
18 ioosconn topGen ran . 𝑡 a b SConn
19 17 18 eqeltrdi z = a b topGen ran . 𝑡 z SConn
20 19 rexlimivw b * z = a b topGen ran . 𝑡 z SConn
21 20 rexlimivw a * b * z = a b topGen ran . 𝑡 z SConn
22 16 21 sylbi z ran . topGen ran . 𝑡 z SConn
23 22 ad2antrl x topGen ran . y x z ran . y z z x topGen ran . 𝑡 z SConn
24 11 12 23 jca32 x topGen ran . y x z ran . y z z x z topGen ran . 𝒫 x y z topGen ran . 𝑡 z SConn
25 24 ex x topGen ran . y x z ran . y z z x z topGen ran . 𝒫 x y z topGen ran . 𝑡 z SConn
26 25 reximdv2 x topGen ran . y x z ran . y z z x z topGen ran . 𝒫 x y z topGen ran . 𝑡 z SConn
27 2 26 mpd x topGen ran . y x z topGen ran . 𝒫 x y z topGen ran . 𝑡 z SConn
28 27 rgen2 x topGen ran . y x z topGen ran . 𝒫 x y z topGen ran . 𝑡 z SConn
29 islly topGen ran . Locally SConn topGen ran . Top x topGen ran . y x z topGen ran . 𝒫 x y z topGen ran . 𝑡 z SConn
30 1 28 29 mpbir2an topGen ran . Locally SConn