Metamath Proof Explorer


Theorem remul01

Description: Real number version of mul01 proven without ax-mulcom . (Contributed by SN, 23-Jan-2024)

Ref Expression
Assertion remul01 AA0=0

Proof

Step Hyp Ref Expression
1 oveq2 A0=12A0=21
2 1 adantl AA0=12A0=21
3 2re 2
4 ax-1rid 221=2
5 3 4 mp1i AA0=121=2
6 2 5 eqtrd AA0=12A0=2
7 3 a1i AA0=12
8 simpl AA0=1A
9 0red AA0=10
10 8 9 remulcld AA0=1A0
11 7 10 remulcld AA0=12A0
12 sn-0ne2 02
13 12 necomi 20
14 13 a1i 2A0=220
15 eqtr2 2A0=22A0=02=0
16 14 15 mteqand 2A0=22A00
17 ax-rrecex 2A02A00x2A0x=1
18 11 16 17 syl2an AA0=12A0=2x2A0x=1
19 2cnd AA0=12A0=2x2A0x=12
20 simplll AA0=12A0=2x2A0x=1A
21 0red AA0=12A0=2x2A0x=10
22 20 21 remulcld AA0=12A0=2x2A0x=1A0
23 22 recnd AA0=12A0=2x2A0x=1A0
24 simprl AA0=12A0=2x2A0x=1x
25 24 recnd AA0=12A0=2x2A0x=1x
26 19 23 25 mulassd AA0=12A0=2x2A0x=12A0x=2A0x
27 simprr AA0=12A0=2x2A0x=12A0x=1
28 20 recnd AA0=12A0=2x2A0x=1A
29 0cnd AA0=12A0=2x2A0x=10
30 28 29 25 mulassd AA0=12A0=2x2A0x=1A0x=A0x
31 remul02 x0x=0
32 31 ad2antrl AA0=12A0=2x2A0x=10x=0
33 32 oveq2d AA0=12A0=2x2A0x=1A0x=A0
34 30 33 eqtrd AA0=12A0=2x2A0x=1A0x=A0
35 34 oveq2d AA0=12A0=2x2A0x=12A0x=2A0
36 26 27 35 3eqtr3rd AA0=12A0=2x2A0x=12A0=1
37 18 36 rexlimddv AA0=12A0=22A0=1
38 6 37 mpdan AA0=12A0=1
39 sn-1ne2 12
40 39 a1i AA0=112
41 38 40 eqnetrd AA0=12A02
42 6 41 pm2.21ddne AA0=1¬A0=1
43 42 ex AA0=1¬A0=1
44 pm2.01 A0=1¬A0=1¬A0=1
45 44 neqned A0=1¬A0=1A01
46 43 45 syl AA01
47 id AA
48 elre0re A0
49 47 48 remulcld AA0
50 ax-rrecex A0A00xA0x=1
51 49 50 sylan AA00xA0x=1
52 simpll AA00xA0x=1A
53 52 recnd AA00xA0x=1A
54 0cnd AA00xA0x=10
55 simprl AA00xA0x=1x
56 55 recnd AA00xA0x=1x
57 53 54 56 mulassd AA00xA0x=1A0x=A0x
58 simprr AA00xA0x=1A0x=1
59 31 oveq2d xA0x=A0
60 59 ad2antrl AA00xA0x=1A0x=A0
61 57 58 60 3eqtr3rd AA00xA0x=1A0=1
62 51 61 rexlimddv AA00A0=1
63 62 ex AA00A0=1
64 63 necon1d AA01A0=0
65 46 64 mpd AA0=0