Metamath Proof Explorer


Theorem remul01

Description: Real number version of mul01 proven without ax-mulcom . (Contributed by SN, 23-Jan-2024)

Ref Expression
Assertion remul01 A A 0 = 0

Proof

Step Hyp Ref Expression
1 oveq2 A 0 = 1 2 A 0 = 2 1
2 1 adantl A A 0 = 1 2 A 0 = 2 1
3 2re 2
4 ax-1rid 2 2 1 = 2
5 3 4 mp1i A A 0 = 1 2 1 = 2
6 2 5 eqtrd A A 0 = 1 2 A 0 = 2
7 3 a1i A A 0 = 1 2
8 simpl A A 0 = 1 A
9 0red A A 0 = 1 0
10 8 9 remulcld A A 0 = 1 A 0
11 7 10 remulcld A A 0 = 1 2 A 0
12 sn-0ne2 0 2
13 12 necomi 2 0
14 13 a1i 2 A 0 = 2 2 0
15 eqtr2 2 A 0 = 2 2 A 0 = 0 2 = 0
16 14 15 mteqand 2 A 0 = 2 2 A 0 0
17 ax-rrecex 2 A 0 2 A 0 0 x 2 A 0 x = 1
18 11 16 17 syl2an A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1
19 2cnd A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 2
20 simplll A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 A
21 0red A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 0
22 20 21 remulcld A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 A 0
23 22 recnd A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 A 0
24 simprl A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 x
25 24 recnd A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 x
26 19 23 25 mulassd A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 2 A 0 x = 2 A 0 x
27 simprr A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 2 A 0 x = 1
28 20 recnd A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 A
29 0cnd A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 0
30 28 29 25 mulassd A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 A 0 x = A 0 x
31 remul02 x 0 x = 0
32 31 ad2antrl A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 0 x = 0
33 32 oveq2d A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 A 0 x = A 0
34 30 33 eqtrd A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 A 0 x = A 0
35 34 oveq2d A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 2 A 0 x = 2 A 0
36 26 27 35 3eqtr3rd A A 0 = 1 2 A 0 = 2 x 2 A 0 x = 1 2 A 0 = 1
37 18 36 rexlimddv A A 0 = 1 2 A 0 = 2 2 A 0 = 1
38 6 37 mpdan A A 0 = 1 2 A 0 = 1
39 sn-1ne2 1 2
40 39 a1i A A 0 = 1 1 2
41 38 40 eqnetrd A A 0 = 1 2 A 0 2
42 6 41 pm2.21ddne A A 0 = 1 ¬ A 0 = 1
43 42 ex A A 0 = 1 ¬ A 0 = 1
44 pm2.01 A 0 = 1 ¬ A 0 = 1 ¬ A 0 = 1
45 44 neqned A 0 = 1 ¬ A 0 = 1 A 0 1
46 43 45 syl A A 0 1
47 id A A
48 elre0re A 0
49 47 48 remulcld A A 0
50 ax-rrecex A 0 A 0 0 x A 0 x = 1
51 49 50 sylan A A 0 0 x A 0 x = 1
52 simpll A A 0 0 x A 0 x = 1 A
53 52 recnd A A 0 0 x A 0 x = 1 A
54 0cnd A A 0 0 x A 0 x = 1 0
55 simprl A A 0 0 x A 0 x = 1 x
56 55 recnd A A 0 0 x A 0 x = 1 x
57 53 54 56 mulassd A A 0 0 x A 0 x = 1 A 0 x = A 0 x
58 simprr A A 0 0 x A 0 x = 1 A 0 x = 1
59 31 oveq2d x A 0 x = A 0
60 59 ad2antrl A A 0 0 x A 0 x = 1 A 0 x = A 0
61 57 58 60 3eqtr3rd A A 0 0 x A 0 x = 1 A 0 = 1
62 51 61 rexlimddv A A 0 0 A 0 = 1
63 62 ex A A 0 0 A 0 = 1
64 63 necon1d A A 0 1 A 0 = 0
65 46 64 mpd A A 0 = 0