Metamath Proof Explorer


Theorem remullem

Description: Lemma for remul , immul , and cjmul . (Contributed by NM, 28-Jul-1999) (Revised by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion remullem A B A B = A B A B A B = A B + A B A B = A B

Proof

Step Hyp Ref Expression
1 replim A A = A + i A
2 replim B B = B + i B
3 1 2 oveqan12d A B A B = A + i A B + i B
4 recl A A
5 4 adantr A B A
6 5 recnd A B A
7 ax-icn i
8 imcl A A
9 8 adantr A B A
10 9 recnd A B A
11 mulcl i A i A
12 7 10 11 sylancr A B i A
13 6 12 addcld A B A + i A
14 recl B B
15 14 adantl A B B
16 15 recnd A B B
17 imcl B B
18 17 adantl A B B
19 18 recnd A B B
20 mulcl i B i B
21 7 19 20 sylancr A B i B
22 13 16 21 adddid A B A + i A B + i B = A + i A B + A + i A i B
23 6 12 16 adddird A B A + i A B = A B + i A B
24 6 12 21 adddird A B A + i A i B = A i B + i A i B
25 23 24 oveq12d A B A + i A B + A + i A i B = A B + i A B + A i B + i A i B
26 5 15 remulcld A B A B
27 26 recnd A B A B
28 12 21 mulcld A B i A i B
29 12 16 mulcld A B i A B
30 6 21 mulcld A B A i B
31 27 28 29 30 add42d A B A B + i A i B + i A B + A i B = A B + i A B + A i B + i A i B
32 7 a1i A B i
33 32 10 32 19 mul4d A B i A i B = i i A B
34 ixi i i = 1
35 34 oveq1i i i A B = -1 A B
36 9 18 remulcld A B A B
37 36 recnd A B A B
38 37 mulm1d A B -1 A B = A B
39 35 38 syl5eq A B i i A B = A B
40 33 39 eqtrd A B i A i B = A B
41 40 oveq2d A B A B + i A i B = A B + A B
42 27 37 negsubd A B A B + A B = A B A B
43 41 42 eqtrd A B A B + i A i B = A B A B
44 9 15 remulcld A B A B
45 44 recnd A B A B
46 mulcl i A B i A B
47 7 45 46 sylancr A B i A B
48 5 18 remulcld A B A B
49 48 recnd A B A B
50 mulcl i A B i A B
51 7 49 50 sylancr A B i A B
52 47 51 addcomd A B i A B + i A B = i A B + i A B
53 32 10 16 mulassd A B i A B = i A B
54 6 32 19 mul12d A B A i B = i A B
55 53 54 oveq12d A B i A B + A i B = i A B + i A B
56 32 49 45 adddid A B i A B + A B = i A B + i A B
57 52 55 56 3eqtr4d A B i A B + A i B = i A B + A B
58 43 57 oveq12d A B A B + i A i B + i A B + A i B = A B - A B + i A B + A B
59 25 31 58 3eqtr2d A B A + i A B + A + i A i B = A B - A B + i A B + A B
60 3 22 59 3eqtrd A B A B = A B - A B + i A B + A B
61 60 fveq2d A B A B = A B - A B + i A B + A B
62 26 36 resubcld A B A B A B
63 48 44 readdcld A B A B + A B
64 crre A B A B A B + A B A B - A B + i A B + A B = A B A B
65 62 63 64 syl2anc A B A B - A B + i A B + A B = A B A B
66 61 65 eqtrd A B A B = A B A B
67 60 fveq2d A B A B = A B - A B + i A B + A B
68 crim A B A B A B + A B A B - A B + i A B + A B = A B + A B
69 62 63 68 syl2anc A B A B - A B + i A B + A B = A B + A B
70 67 69 eqtrd A B A B = A B + A B
71 mulcl A B A B
72 remim A B A B = A B i A B
73 71 72 syl A B A B = A B i A B
74 remim A A = A i A
75 remim B B = B i B
76 74 75 oveqan12d A B A B = A i A B i B
77 16 21 subcld A B B i B
78 6 12 77 subdird A B A i A B i B = A B i B i A B i B
79 27 30 29 28 subadd4d A B A B - A i B - i A B i A i B = A B + i A i B - A i B + i A B
80 6 16 21 subdid A B A B i B = A B A i B
81 12 16 21 subdid A B i A B i B = i A B i A i B
82 80 81 oveq12d A B A B i B i A B i B = A B - A i B - i A B i A i B
83 65 61 43 3eqtr4d A B A B = A B + i A i B
84 70 oveq2d A B i A B = i A B + A B
85 54 53 oveq12d A B A i B + i A B = i A B + i A B
86 56 84 85 3eqtr4d A B i A B = A i B + i A B
87 83 86 oveq12d A B A B i A B = A B + i A i B - A i B + i A B
88 79 82 87 3eqtr4d A B A B i B i A B i B = A B i A B
89 76 78 88 3eqtrd A B A B = A B i A B
90 73 89 eqtr4d A B A B = A B
91 66 70 90 3jca A B A B = A B A B A B = A B + A B A B = A B