Metamath Proof Explorer


Theorem reofld

Description: The real numbers form an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018)

Ref Expression
Assertion reofld fldoField

Proof

Step Hyp Ref Expression
1 refld fldField
2 isfld fldFieldfldDivRingfldCRing
3 2 simplbi fldFieldfldDivRing
4 drngring fldDivRingfldRing
5 1 3 4 mp2b fldRing
6 ringgrp fldRingfldGrp
7 5 6 ax-mp fldGrp
8 grpmnd fldGrpfldMnd
9 7 8 ax-mp fldMnd
10 retos fldToset
11 simpl abcaba
12 simpr1 abcabb
13 simpr2 abcabc
14 simpr3 abcabab
15 11 12 13 14 leadd1dd abcaba+cb+c
16 15 3anassrs abcaba+cb+c
17 16 ex abcaba+cb+c
18 17 3impa abcaba+cb+c
19 18 rgen3 abcaba+cb+c
20 rebase =Basefld
21 replusg +=+fld
22 rele2 =fld
23 20 21 22 isomnd fldoMndfldMndfldTosetabcaba+cb+c
24 9 10 19 23 mpbir3an fldoMnd
25 isogrp fldoGrpfldGrpfldoMnd
26 7 24 25 mpbir2an fldoGrp
27 mulge0 a0ab0b0ab
28 27 an4s ab0a0b0ab
29 28 ex ab0a0b0ab
30 29 rgen2 ab0a0b0ab
31 re0g 0=0fld
32 remulr ×=fld
33 20 31 32 22 isorng fldoRingfldRingfldoGrpab0a0b0ab
34 5 26 30 33 mpbir3an fldoRing
35 isofld fldoFieldfldFieldfldoRing
36 1 34 35 mpbir2an fldoField