Metamath Proof Explorer


Theorem reofld

Description: The real numbers form an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018)

Ref Expression
Assertion reofld fld oField

Proof

Step Hyp Ref Expression
1 refld fld Field
2 isfld fld Field fld DivRing fld CRing
3 2 simplbi fld Field fld DivRing
4 drngring fld DivRing fld Ring
5 1 3 4 mp2b fld Ring
6 ringgrp fld Ring fld Grp
7 5 6 ax-mp fld Grp
8 grpmnd fld Grp fld Mnd
9 7 8 ax-mp fld Mnd
10 retos fld Toset
11 simpl a b c a b a
12 simpr1 a b c a b b
13 simpr2 a b c a b c
14 simpr3 a b c a b a b
15 11 12 13 14 leadd1dd a b c a b a + c b + c
16 15 3anassrs a b c a b a + c b + c
17 16 ex a b c a b a + c b + c
18 17 3impa a b c a b a + c b + c
19 18 rgen3 a b c a b a + c b + c
20 rebase = Base fld
21 replusg + = + fld
22 rele2 = fld
23 20 21 22 isomnd fld oMnd fld Mnd fld Toset a b c a b a + c b + c
24 9 10 19 23 mpbir3an fld oMnd
25 isogrp fld oGrp fld Grp fld oMnd
26 7 24 25 mpbir2an fld oGrp
27 mulge0 a 0 a b 0 b 0 a b
28 27 an4s a b 0 a 0 b 0 a b
29 28 ex a b 0 a 0 b 0 a b
30 29 rgen2 a b 0 a 0 b 0 a b
31 re0g 0 = 0 fld
32 remulr × = fld
33 20 31 32 22 isorng fld oRing fld Ring fld oGrp a b 0 a 0 b 0 a b
34 5 26 30 33 mpbir3an fld oRing
35 isofld fld oField fld Field fld oRing
36 1 34 35 mpbir2an fld oField