Metamath Proof Explorer


Theorem respreima

Description: The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion respreima FunFFB-1A=F-1AB

Proof

Step Hyp Ref Expression
1 funfn FunFFFndomF
2 elin xBdomFxBxdomF
3 2 biancomi xBdomFxdomFxB
4 3 anbi1i xBdomFFBxAxdomFxBFBxA
5 fvres xBFBx=Fx
6 5 eleq1d xBFBxAFxA
7 6 adantl xdomFxBFBxAFxA
8 7 pm5.32i xdomFxBFBxAxdomFxBFxA
9 4 8 bitri xBdomFFBxAxdomFxBFxA
10 9 a1i FFndomFxBdomFFBxAxdomFxBFxA
11 an32 xdomFxBFxAxdomFFxAxB
12 10 11 bitrdi FFndomFxBdomFFBxAxdomFFxAxB
13 fnfun FFndomFFunF
14 13 funresd FFndomFFunFB
15 dmres domFB=BdomF
16 df-fn FBFnBdomFFunFBdomFB=BdomF
17 14 15 16 sylanblrc FFndomFFBFnBdomF
18 elpreima FBFnBdomFxFB-1AxBdomFFBxA
19 17 18 syl FFndomFxFB-1AxBdomFFBxA
20 elin xF-1ABxF-1AxB
21 elpreima FFndomFxF-1AxdomFFxA
22 21 anbi1d FFndomFxF-1AxBxdomFFxAxB
23 20 22 bitrid FFndomFxF-1ABxdomFFxAxB
24 12 19 23 3bitr4d FFndomFxFB-1AxF-1AB
25 1 24 sylbi FunFxFB-1AxF-1AB
26 25 eqrdv FunFFB-1A=F-1AB