Metamath Proof Explorer


Theorem respreima

Description: The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion respreima Fun F F B -1 A = F -1 A B

Proof

Step Hyp Ref Expression
1 funfn Fun F F Fn dom F
2 elin x B dom F x B x dom F
3 2 biancomi x B dom F x dom F x B
4 3 anbi1i x B dom F F B x A x dom F x B F B x A
5 fvres x B F B x = F x
6 5 eleq1d x B F B x A F x A
7 6 adantl x dom F x B F B x A F x A
8 7 pm5.32i x dom F x B F B x A x dom F x B F x A
9 4 8 bitri x B dom F F B x A x dom F x B F x A
10 9 a1i F Fn dom F x B dom F F B x A x dom F x B F x A
11 an32 x dom F x B F x A x dom F F x A x B
12 10 11 bitrdi F Fn dom F x B dom F F B x A x dom F F x A x B
13 fnfun F Fn dom F Fun F
14 13 funresd F Fn dom F Fun F B
15 dmres dom F B = B dom F
16 df-fn F B Fn B dom F Fun F B dom F B = B dom F
17 14 15 16 sylanblrc F Fn dom F F B Fn B dom F
18 elpreima F B Fn B dom F x F B -1 A x B dom F F B x A
19 17 18 syl F Fn dom F x F B -1 A x B dom F F B x A
20 elin x F -1 A B x F -1 A x B
21 elpreima F Fn dom F x F -1 A x dom F F x A
22 21 anbi1d F Fn dom F x F -1 A x B x dom F F x A x B
23 20 22 bitrid F Fn dom F x F -1 A B x dom F F x A x B
24 12 19 23 3bitr4d F Fn dom F x F B -1 A x F -1 A B
25 1 24 sylbi Fun F x F B -1 A x F -1 A B
26 25 eqrdv Fun F F B -1 A = F -1 A B