Metamath Proof Explorer


Theorem ressmplbas2

Description: The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses ressmpl.s S=ImPolyR
ressmpl.h H=R𝑠T
ressmpl.u U=ImPolyH
ressmpl.b B=BaseU
ressmpl.1 φIV
ressmpl.2 φTSubRingR
ressmplbas2.w W=ImPwSerH
ressmplbas2.c C=BaseW
ressmplbas2.k K=BaseS
Assertion ressmplbas2 φB=CK

Proof

Step Hyp Ref Expression
1 ressmpl.s S=ImPolyR
2 ressmpl.h H=R𝑠T
3 ressmpl.u U=ImPolyH
4 ressmpl.b B=BaseU
5 ressmpl.1 φIV
6 ressmpl.2 φTSubRingR
7 ressmplbas2.w W=ImPwSerH
8 ressmplbas2.c C=BaseW
9 ressmplbas2.k K=BaseS
10 eqid ImPwSerR=ImPwSerR
11 10 2 7 8 subrgpsr IVTSubRingRCSubRingImPwSerR
12 5 6 11 syl2anc φCSubRingImPwSerR
13 eqid BaseImPwSerR=BaseImPwSerR
14 13 subrgss CSubRingImPwSerRCBaseImPwSerR
15 12 14 syl φCBaseImPwSerR
16 df-ss CBaseImPwSerRCBaseImPwSerR=C
17 15 16 sylib φCBaseImPwSerR=C
18 eqid 0R=0R
19 2 18 subrg0 TSubRingR0R=0H
20 6 19 syl φ0R=0H
21 20 breq2d φfinSupp0RffinSupp0Hf
22 21 abbidv φf|finSupp0Rf=f|finSupp0Hf
23 17 22 ineq12d φCBaseImPwSerRf|finSupp0Rf=Cf|finSupp0Hf
24 23 eqcomd φCf|finSupp0Hf=CBaseImPwSerRf|finSupp0Rf
25 eqid 0H=0H
26 3 7 8 25 4 mplbas B=fC|finSupp0Hf
27 dfrab3 fC|finSupp0Hf=Cf|finSupp0Hf
28 26 27 eqtri B=Cf|finSupp0Hf
29 1 10 13 18 9 mplbas K=fBaseImPwSerR|finSupp0Rf
30 dfrab3 fBaseImPwSerR|finSupp0Rf=BaseImPwSerRf|finSupp0Rf
31 29 30 eqtri K=BaseImPwSerRf|finSupp0Rf
32 31 ineq2i CK=CBaseImPwSerRf|finSupp0Rf
33 inass CBaseImPwSerRf|finSupp0Rf=CBaseImPwSerRf|finSupp0Rf
34 32 33 eqtr4i CK=CBaseImPwSerRf|finSupp0Rf
35 24 28 34 3eqtr4g φB=CK