Metamath Proof Explorer


Theorem reuind

Description: Existential uniqueness via an indirect equality. (Contributed by NM, 16-Oct-2010)

Ref Expression
Hypotheses reuind.1 x=yφψ
reuind.2 x=yA=B
Assertion reuind xyACφBCψA=BxACφ∃!zCxACφz=A

Proof

Step Hyp Ref Expression
1 reuind.1 x=yφψ
2 reuind.2 x=yA=B
3 2 eleq1d x=yACBC
4 3 1 anbi12d x=yACφBCψ
5 4 cbvexvw xACφyBCψ
6 r19.41v zCz=BψzCz=Bψ
7 6 exbii yzCz=BψyzCz=Bψ
8 rexcom4 zCyz=BψyzCz=Bψ
9 risset BCzCz=B
10 9 anbi1i BCψzCz=Bψ
11 10 exbii yBCψyzCz=Bψ
12 7 8 11 3bitr4ri yBCψzCyz=Bψ
13 5 12 bitri xACφzCyz=Bψ
14 eqeq2 A=Bz=Az=B
15 14 imim2i ACφBCψA=BACφBCψz=Az=B
16 biimpr z=Az=Bz=Bz=A
17 16 imim2i ACφBCψz=Az=BACφBCψz=Bz=A
18 an31 ACφBCψz=Bz=BBCψACφ
19 18 imbi1i ACφBCψz=Bz=Az=BBCψACφz=A
20 impexp ACφBCψz=Bz=AACφBCψz=Bz=A
21 impexp z=BBCψACφz=Az=BBCψACφz=A
22 19 20 21 3bitr3i ACφBCψz=Bz=Az=BBCψACφz=A
23 17 22 sylib ACφBCψz=Az=Bz=BBCψACφz=A
24 15 23 syl ACφBCψA=Bz=BBCψACφz=A
25 24 2alimi xyACφBCψA=Bxyz=BBCψACφz=A
26 19.23v yz=BBCψACφz=Ayz=BBCψACφz=A
27 an12 z=BBCψBCz=Bψ
28 eleq1 z=BzCBC
29 28 adantr z=BψzCBC
30 29 pm5.32ri zCz=BψBCz=Bψ
31 27 30 bitr4i z=BBCψzCz=Bψ
32 31 exbii yz=BBCψyzCz=Bψ
33 19.42v yzCz=BψzCyz=Bψ
34 32 33 bitri yz=BBCψzCyz=Bψ
35 34 imbi1i yz=BBCψACφz=AzCyz=BψACφz=A
36 26 35 bitri yz=BBCψACφz=AzCyz=BψACφz=A
37 36 albii xyz=BBCψACφz=AxzCyz=BψACφz=A
38 19.21v xzCyz=BψACφz=AzCyz=BψxACφz=A
39 37 38 bitri xyz=BBCψACφz=AzCyz=BψxACφz=A
40 25 39 sylib xyACφBCψA=BzCyz=BψxACφz=A
41 40 expd xyACφBCψA=BzCyz=BψxACφz=A
42 41 reximdvai xyACφBCψA=BzCyz=BψzCxACφz=A
43 13 42 biimtrid xyACφBCψA=BxACφzCxACφz=A
44 43 imp xyACφBCψA=BxACφzCxACφz=A
45 pm4.24 ACφACφACφ
46 45 biimpi ACφACφACφ
47 anim12 ACφz=AACφw=AACφACφz=Aw=A
48 eqtr3 z=Aw=Az=w
49 46 47 48 syl56 ACφz=AACφw=AACφz=w
50 49 alanimi xACφz=AxACφw=AxACφz=w
51 19.23v xACφz=wxACφz=w
52 50 51 sylib xACφz=AxACφw=AxACφz=w
53 52 com12 xACφxACφz=AxACφw=Az=w
54 53 a1d xACφzCwCxACφz=AxACφw=Az=w
55 54 ralrimivv xACφzCwCxACφz=AxACφw=Az=w
56 55 adantl xyACφBCψA=BxACφzCwCxACφz=AxACφw=Az=w
57 eqeq1 z=wz=Aw=A
58 57 imbi2d z=wACφz=AACφw=A
59 58 albidv z=wxACφz=AxACφw=A
60 59 reu4 ∃!zCxACφz=AzCxACφz=AzCwCxACφz=AxACφw=Az=w
61 44 56 60 sylanbrc xyACφBCψA=BxACφ∃!zCxACφz=A