Description: Existential uniqueness via an indirect equality. (Contributed by NM, 16-Oct-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reuind.1 | |
|
reuind.2 | |
||
Assertion | reuind | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuind.1 | |
|
2 | reuind.2 | |
|
3 | 2 | eleq1d | |
4 | 3 1 | anbi12d | |
5 | 4 | cbvexvw | |
6 | r19.41v | |
|
7 | 6 | exbii | |
8 | rexcom4 | |
|
9 | risset | |
|
10 | 9 | anbi1i | |
11 | 10 | exbii | |
12 | 7 8 11 | 3bitr4ri | |
13 | 5 12 | bitri | |
14 | eqeq2 | |
|
15 | 14 | imim2i | |
16 | biimpr | |
|
17 | 16 | imim2i | |
18 | an31 | |
|
19 | 18 | imbi1i | |
20 | impexp | |
|
21 | impexp | |
|
22 | 19 20 21 | 3bitr3i | |
23 | 17 22 | sylib | |
24 | 15 23 | syl | |
25 | 24 | 2alimi | |
26 | 19.23v | |
|
27 | an12 | |
|
28 | eleq1 | |
|
29 | 28 | adantr | |
30 | 29 | pm5.32ri | |
31 | 27 30 | bitr4i | |
32 | 31 | exbii | |
33 | 19.42v | |
|
34 | 32 33 | bitri | |
35 | 34 | imbi1i | |
36 | 26 35 | bitri | |
37 | 36 | albii | |
38 | 19.21v | |
|
39 | 37 38 | bitri | |
40 | 25 39 | sylib | |
41 | 40 | expd | |
42 | 41 | reximdvai | |
43 | 13 42 | biimtrid | |
44 | 43 | imp | |
45 | pm4.24 | |
|
46 | 45 | biimpi | |
47 | anim12 | |
|
48 | eqtr3 | |
|
49 | 46 47 48 | syl56 | |
50 | 49 | alanimi | |
51 | 19.23v | |
|
52 | 50 51 | sylib | |
53 | 52 | com12 | |
54 | 53 | a1d | |
55 | 54 | ralrimivv | |
56 | 55 | adantl | |
57 | eqeq1 | |
|
58 | 57 | imbi2d | |
59 | 58 | albidv | |
60 | 59 | reu4 | |
61 | 44 56 60 | sylanbrc | |