Metamath Proof Explorer


Theorem reupr

Description: There is a unique unordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 7-Apr-2023)

Ref Expression
Hypotheses reupr.a p=abψχ
reupr.x p=xyψθ
Assertion reupr XV∃!pPairsXψaXbXχxXyXθxy=ab

Proof

Step Hyp Ref Expression
1 reupr.a p=abψχ
2 reupr.x p=xyψθ
3 nfsbc1v p[˙q/p]˙ψ
4 nfsbc1v p[˙w/p]˙ψ
5 sbceq1a p=wψ[˙w/p]˙ψ
6 dfsbcq w=q[˙w/p]˙ψ[˙q/p]˙ψ
7 3 4 5 6 reu8nf ∃!pPairsXψpPairsXψqPairsX[˙q/p]˙ψp=q
8 sprel pPairsXaXbXp=ab
9 1 biimpcd ψp=abχ
10 9 adantr ψqPairsX[˙q/p]˙ψp=qp=abχ
11 10 ad2antlr XVψqPairsX[˙q/p]˙ψp=qaXbXp=abχ
12 11 imp XVψqPairsX[˙q/p]˙ψp=qaXbXp=abχ
13 pm3.22 xXyXXVXVxXyX
14 13 adantr xXyXXVψXVxXyX
15 prelspr XVxXyXxyPairsX
16 dfsbcq q=xy[˙q/p]˙ψ[˙xy/p]˙ψ
17 eqeq2 q=xyp=qp=xy
18 16 17 imbi12d q=xy[˙q/p]˙ψp=q[˙xy/p]˙ψp=xy
19 18 adantl XVxXyXq=xy[˙q/p]˙ψp=q[˙xy/p]˙ψp=xy
20 15 19 rspcdv XVxXyXqPairsX[˙q/p]˙ψp=q[˙xy/p]˙ψp=xy
21 14 20 syl xXyXXVψqPairsX[˙q/p]˙ψp=q[˙xy/p]˙ψp=xy
22 zfpair2 xyV
23 22 2 sbcie [˙xy/p]˙ψθ
24 pm2.27 [˙xy/p]˙ψ[˙xy/p]˙ψp=xyp=xy
25 23 24 sylbir θ[˙xy/p]˙ψp=xyp=xy
26 eqcom xy=pp=xy
27 25 26 syl6ibr θ[˙xy/p]˙ψp=xyxy=p
28 27 com12 [˙xy/p]˙ψp=xyθxy=p
29 eqeq2 ab=pxy=abxy=p
30 29 eqcoms p=abxy=abxy=p
31 30 imbi2d p=abθxy=abθxy=p
32 28 31 syl5ibrcom [˙xy/p]˙ψp=xyp=abθxy=ab
33 32 a1d [˙xy/p]˙ψp=xyaXbXp=abθxy=ab
34 21 33 syl6 xXyXXVψqPairsX[˙q/p]˙ψp=qaXbXp=abθxy=ab
35 34 expimpd xXyXXVψqPairsX[˙q/p]˙ψp=qaXbXp=abθxy=ab
36 35 expimpd xXyXXVψqPairsX[˙q/p]˙ψp=qaXbXp=abθxy=ab
37 36 imp4c xXyXXVψqPairsX[˙q/p]˙ψp=qaXbXp=abθxy=ab
38 37 impcom XVψqPairsX[˙q/p]˙ψp=qaXbXp=abxXyXθxy=ab
39 38 ralrimivva XVψqPairsX[˙q/p]˙ψp=qaXbXp=abxXyXθxy=ab
40 12 39 jca XVψqPairsX[˙q/p]˙ψp=qaXbXp=abχxXyXθxy=ab
41 40 ex XVψqPairsX[˙q/p]˙ψp=qaXbXp=abχxXyXθxy=ab
42 41 reximdvva XVψqPairsX[˙q/p]˙ψp=qaXbXp=abaXbXχxXyXθxy=ab
43 42 expcom ψqPairsX[˙q/p]˙ψp=qXVaXbXp=abaXbXχxXyXθxy=ab
44 43 com13 aXbXp=abXVψqPairsX[˙q/p]˙ψp=qaXbXχxXyXθxy=ab
45 8 44 syl pPairsXXVψqPairsX[˙q/p]˙ψp=qaXbXχxXyXθxy=ab
46 45 impcom XVpPairsXψqPairsX[˙q/p]˙ψp=qaXbXχxXyXθxy=ab
47 46 rexlimdva XVpPairsXψqPairsX[˙q/p]˙ψp=qaXbXχxXyXθxy=ab
48 prelspr XVaXbXabPairsX
49 48 adantr XVaXbXχxXyXθxy=ababPairsX
50 simprl XVaXbXχxXyXθxy=abχ
51 nfsbc1v x[˙c/x]˙θ
52 nfv xcy=ab
53 51 52 nfim x[˙c/x]˙θcy=ab
54 nfsbc1v y[˙d/y]˙[˙c/x]˙θ
55 nfv ycd=ab
56 54 55 nfim y[˙d/y]˙[˙c/x]˙θcd=ab
57 sbceq1a x=cθ[˙c/x]˙θ
58 preq1 x=cxy=cy
59 58 eqeq1d x=cxy=abcy=ab
60 57 59 imbi12d x=cθxy=ab[˙c/x]˙θcy=ab
61 sbceq1a y=d[˙c/x]˙θ[˙d/y]˙[˙c/x]˙θ
62 preq2 y=dcy=cd
63 62 eqeq1d y=dcy=abcd=ab
64 61 63 imbi12d y=d[˙c/x]˙θcy=ab[˙d/y]˙[˙c/x]˙θcd=ab
65 53 56 60 64 rspc2 cXdXxXyXθxy=ab[˙d/y]˙[˙c/x]˙θcd=ab
66 65 ad2antlr XVaXbXcXdXχxXyXθxy=ab[˙d/y]˙[˙c/x]˙θcd=ab
67 2 sbcpr [˙cd/p]˙ψ[˙d/y]˙[˙c/x]˙θ
68 pm2.27 [˙d/y]˙[˙c/x]˙θ[˙d/y]˙[˙c/x]˙θcd=abcd=ab
69 67 68 sylbi [˙cd/p]˙ψ[˙d/y]˙[˙c/x]˙θcd=abcd=ab
70 eqcom ab=cdcd=ab
71 69 70 syl6ibr [˙cd/p]˙ψ[˙d/y]˙[˙c/x]˙θcd=abab=cd
72 71 com12 [˙d/y]˙[˙c/x]˙θcd=ab[˙cd/p]˙ψab=cd
73 66 72 syl6 XVaXbXcXdXχxXyXθxy=ab[˙cd/p]˙ψab=cd
74 73 expimpd XVaXbXcXdXχxXyXθxy=ab[˙cd/p]˙ψab=cd
75 74 expcom cXdXXVaXbXχxXyXθxy=ab[˙cd/p]˙ψab=cd
76 75 impd cXdXXVaXbXχxXyXθxy=ab[˙cd/p]˙ψab=cd
77 76 impcom XVaXbXχxXyXθxy=abcXdX[˙cd/p]˙ψab=cd
78 dfsbcq q=cd[˙q/p]˙ψ[˙cd/p]˙ψ
79 eqeq2 q=cdab=qab=cd
80 78 79 imbi12d q=cd[˙q/p]˙ψab=q[˙cd/p]˙ψab=cd
81 77 80 syl5ibrcom XVaXbXχxXyXθxy=abcXdXq=cd[˙q/p]˙ψab=q
82 81 rexlimdvva XVaXbXχxXyXθxy=abcXdXq=cd[˙q/p]˙ψab=q
83 sprel qPairsXcXdXq=cd
84 82 83 impel XVaXbXχxXyXθxy=abqPairsX[˙q/p]˙ψab=q
85 84 ralrimiva XVaXbXχxXyXθxy=abqPairsX[˙q/p]˙ψab=q
86 nfv pχ
87 nfcv _pPairsX
88 nfv pab=q
89 3 88 nfim p[˙q/p]˙ψab=q
90 87 89 nfralw pqPairsX[˙q/p]˙ψab=q
91 86 90 nfan pχqPairsX[˙q/p]˙ψab=q
92 eqeq1 p=abp=qab=q
93 92 imbi2d p=ab[˙q/p]˙ψp=q[˙q/p]˙ψab=q
94 93 ralbidv p=abqPairsX[˙q/p]˙ψp=qqPairsX[˙q/p]˙ψab=q
95 1 94 anbi12d p=abψqPairsX[˙q/p]˙ψp=qχqPairsX[˙q/p]˙ψab=q
96 91 95 rspce abPairsXχqPairsX[˙q/p]˙ψab=qpPairsXψqPairsX[˙q/p]˙ψp=q
97 49 50 85 96 syl12anc XVaXbXχxXyXθxy=abpPairsXψqPairsX[˙q/p]˙ψp=q
98 97 ex XVaXbXχxXyXθxy=abpPairsXψqPairsX[˙q/p]˙ψp=q
99 98 rexlimdvva XVaXbXχxXyXθxy=abpPairsXψqPairsX[˙q/p]˙ψp=q
100 47 99 impbid XVpPairsXψqPairsX[˙q/p]˙ψp=qaXbXχxXyXθxy=ab
101 7 100 bitrid XV∃!pPairsXψaXbXχxXyXθxy=ab