| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexuz3.1 |
|
| 2 |
|
eluzelre |
|
| 3 |
2 1
|
eleq2s |
|
| 4 |
3
|
adantr |
|
| 5 |
|
eluzelz |
|
| 6 |
5 1
|
eleq2s |
|
| 7 |
|
eluzelz |
|
| 8 |
7 1
|
eleq2s |
|
| 9 |
|
eluz |
|
| 10 |
6 8 9
|
syl2an |
|
| 11 |
10
|
biimprd |
|
| 12 |
11
|
expimpd |
|
| 13 |
12
|
imim1d |
|
| 14 |
13
|
exp4a |
|
| 15 |
14
|
ralimdv2 |
|
| 16 |
15
|
imp |
|
| 17 |
4 16
|
jca |
|
| 18 |
17
|
reximi2 |
|
| 19 |
|
simpl |
|
| 20 |
|
flcl |
|
| 21 |
20
|
adantl |
|
| 22 |
21
|
peano2zd |
|
| 23 |
22 19
|
ifcld |
|
| 24 |
|
zre |
|
| 25 |
|
reflcl |
|
| 26 |
|
peano2re |
|
| 27 |
25 26
|
syl |
|
| 28 |
|
max1 |
|
| 29 |
24 27 28
|
syl2an |
|
| 30 |
|
eluz2 |
|
| 31 |
19 23 29 30
|
syl3anbrc |
|
| 32 |
31 1
|
eleqtrrdi |
|
| 33 |
|
impexp |
|
| 34 |
|
uzss |
|
| 35 |
31 34
|
syl |
|
| 36 |
35 1
|
sseqtrrdi |
|
| 37 |
36
|
sselda |
|
| 38 |
|
simplr |
|
| 39 |
23
|
adantr |
|
| 40 |
39
|
zred |
|
| 41 |
|
eluzelre |
|
| 42 |
41
|
adantl |
|
| 43 |
|
simpr |
|
| 44 |
27
|
adantl |
|
| 45 |
23
|
zred |
|
| 46 |
|
fllep1 |
|
| 47 |
46
|
adantl |
|
| 48 |
|
max2 |
|
| 49 |
24 27 48
|
syl2an |
|
| 50 |
43 44 45 47 49
|
letrd |
|
| 51 |
50
|
adantr |
|
| 52 |
|
eluzle |
|
| 53 |
52
|
adantl |
|
| 54 |
38 40 42 51 53
|
letrd |
|
| 55 |
37 54
|
jca |
|
| 56 |
55
|
ex |
|
| 57 |
56
|
imim1d |
|
| 58 |
33 57
|
biimtrrid |
|
| 59 |
58
|
ralimdv2 |
|
| 60 |
|
fveq2 |
|
| 61 |
60
|
raleqdv |
|
| 62 |
61
|
rspcev |
|
| 63 |
32 59 62
|
syl6an |
|
| 64 |
63
|
rexlimdva |
|
| 65 |
|
fveq2 |
|
| 66 |
65
|
raleqdv |
|
| 67 |
66
|
cbvrexvw |
|
| 68 |
64 67
|
imbitrdi |
|
| 69 |
18 68
|
impbid2 |
|