Description: Given a real continuous function F defined on a compact topological space, there is always a positive integer that is a strict upper bound of its range. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rfcnnnub.1 | |
|
rfcnnnub.2 | |
||
rfcnnnub.3 | |
||
rfcnnnub.4 | |
||
rfcnnnub.5 | |
||
rfcnnnub.6 | |
||
rfcnnnub.7 | |
||
rfcnnnub.8 | |
||
Assertion | rfcnnnub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rfcnnnub.1 | |
|
2 | rfcnnnub.2 | |
|
3 | rfcnnnub.3 | |
|
4 | rfcnnnub.4 | |
|
5 | rfcnnnub.5 | |
|
6 | rfcnnnub.6 | |
|
7 | rfcnnnub.7 | |
|
8 | rfcnnnub.8 | |
|
9 | nfcv | |
|
10 | nfcv | |
|
11 | nfcv | |
|
12 | nfv | |
|
13 | 8 7 | eleqtrdi | |
14 | 9 1 10 11 12 2 5 3 4 13 6 | evthf | |
15 | df-rex | |
|
16 | 14 15 | sylib | |
17 | 3 5 7 8 | fcnre | |
18 | 17 | ffvelcdmda | |
19 | 18 | ex | |
20 | 19 | anim1d | |
21 | 20 | eximdv | |
22 | 16 21 | mpd | |
23 | 17 | ffvelcdmda | |
24 | 23 | ex | |
25 | 2 24 | ralrimi | |
26 | 19.41v | |
|
27 | 22 25 26 | sylanbrc | |
28 | df-3an | |
|
29 | 28 | exbii | |
30 | 27 29 | sylibr | |
31 | nfcv | |
|
32 | 1 31 | nffv | |
33 | 32 | nfel1 | |
34 | nfra1 | |
|
35 | nfra1 | |
|
36 | 33 34 35 | nf3an | |
37 | nfv | |
|
38 | nfcv | |
|
39 | nfcv | |
|
40 | 32 38 39 | nfbr | |
41 | 37 40 | nfan | |
42 | 36 41 | nfan | |
43 | simpll3 | |
|
44 | simpr | |
|
45 | rsp | |
|
46 | 43 44 45 | sylc | |
47 | simpll1 | |
|
48 | simplrl | |
|
49 | 48 | nnred | |
50 | simpl2 | |
|
51 | 50 | r19.21bi | |
52 | simplrr | |
|
53 | 46 47 49 51 52 | lelttrd | |
54 | 53 | ex | |
55 | 42 54 | ralrimi | |
56 | arch | |
|
57 | 56 | 3ad2ant1 | |
58 | 55 57 | reximddv | |
59 | 58 | eximi | |
60 | 30 59 | syl | |
61 | 19.9v | |
|
62 | 60 61 | sylib | |