Metamath Proof Explorer


Theorem rmsuppss

Description: The support of a mapping of a multiplication of a constant with a function into a ring is a subset of the support of the function. (Contributed by AV, 11-Apr-2019)

Ref Expression
Hypothesis rmsuppss.r R=BaseM
Assertion rmsuppss MRingVXCRARVvVCMAvsupp0MAsupp0M

Proof

Step Hyp Ref Expression
1 rmsuppss.r R=BaseM
2 oveq2 Aw=0MCMAw=CM0M
3 simpll1 MRingVXCRARVwVMRing
4 simpll3 MRingVXCRARVwVCR
5 eqid M=M
6 eqid 0M=0M
7 1 5 6 ringrz MRingCRCM0M=0M
8 3 4 7 syl2anc MRingVXCRARVwVCM0M=0M
9 2 8 sylan9eqr MRingVXCRARVwVAw=0MCMAw=0M
10 9 ex MRingVXCRARVwVAw=0MCMAw=0M
11 10 necon3d MRingVXCRARVwVCMAw0MAw0M
12 11 ss2rabdv MRingVXCRARVwV|CMAw0MwV|Aw0M
13 elmapi ARVA:VR
14 13 fdmd ARVdomA=V
15 14 adantl MRingVXCRARVdomA=V
16 rabeq domA=VwdomA|Aw0M=wV|Aw0M
17 15 16 syl MRingVXCRARVwdomA|Aw0M=wV|Aw0M
18 12 17 sseqtrrd MRingVXCRARVwV|CMAw0MwdomA|Aw0M
19 fveq2 v=wAv=Aw
20 19 oveq2d v=wCMAv=CMAw
21 20 cbvmptv vVCMAv=wVCMAw
22 simpl2 MRingVXCRARVVX
23 fvexd MRingVXCRARV0MV
24 ovexd MRingVXCRARVwVCMAwV
25 21 22 23 24 mptsuppd MRingVXCRARVvVCMAvsupp0M=wV|CMAw0M
26 elmapfun ARVFunA
27 26 adantl MRingVXCRARVFunA
28 simpr MRingVXCRARVARV
29 suppval1 FunAARV0MVAsupp0M=wdomA|Aw0M
30 27 28 23 29 syl3anc MRingVXCRARVAsupp0M=wdomA|Aw0M
31 18 25 30 3sstr4d MRingVXCRARVvVCMAvsupp0MAsupp0M