Metamath Proof Explorer


Theorem rmsuppss

Description: The support of a mapping of a multiplication of a constant with a function into a ring is a subset of the support of the function. (Contributed by AV, 11-Apr-2019)

Ref Expression
Hypothesis rmsuppss.r R = Base M
Assertion rmsuppss M Ring V X C R A R V v V C M A v supp 0 M A supp 0 M

Proof

Step Hyp Ref Expression
1 rmsuppss.r R = Base M
2 oveq2 A w = 0 M C M A w = C M 0 M
3 simpll1 M Ring V X C R A R V w V M Ring
4 simpll3 M Ring V X C R A R V w V C R
5 eqid M = M
6 eqid 0 M = 0 M
7 1 5 6 ringrz M Ring C R C M 0 M = 0 M
8 3 4 7 syl2anc M Ring V X C R A R V w V C M 0 M = 0 M
9 2 8 sylan9eqr M Ring V X C R A R V w V A w = 0 M C M A w = 0 M
10 9 ex M Ring V X C R A R V w V A w = 0 M C M A w = 0 M
11 10 necon3d M Ring V X C R A R V w V C M A w 0 M A w 0 M
12 11 ss2rabdv M Ring V X C R A R V w V | C M A w 0 M w V | A w 0 M
13 elmapi A R V A : V R
14 13 fdmd A R V dom A = V
15 14 adantl M Ring V X C R A R V dom A = V
16 rabeq dom A = V w dom A | A w 0 M = w V | A w 0 M
17 15 16 syl M Ring V X C R A R V w dom A | A w 0 M = w V | A w 0 M
18 12 17 sseqtrrd M Ring V X C R A R V w V | C M A w 0 M w dom A | A w 0 M
19 fveq2 v = w A v = A w
20 19 oveq2d v = w C M A v = C M A w
21 20 cbvmptv v V C M A v = w V C M A w
22 simpl2 M Ring V X C R A R V V X
23 fvexd M Ring V X C R A R V 0 M V
24 ovexd M Ring V X C R A R V w V C M A w V
25 21 22 23 24 mptsuppd M Ring V X C R A R V v V C M A v supp 0 M = w V | C M A w 0 M
26 elmapfun A R V Fun A
27 26 adantl M Ring V X C R A R V Fun A
28 simpr M Ring V X C R A R V A R V
29 suppval1 Fun A A R V 0 M V A supp 0 M = w dom A | A w 0 M
30 27 28 23 29 syl3anc M Ring V X C R A R V A supp 0 M = w dom A | A w 0 M
31 18 25 30 3sstr4d M Ring V X C R A R V v V C M A v supp 0 M A supp 0 M