Description: A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020) Generalization for non-unital rings. The assumption U e. ( SubGrpR ) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rnglidlabl.l | |
|
rnglidlabl.i | |
||
Assertion | rnglidlrng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnglidlabl.l | |
|
2 | rnglidlabl.i | |
|
3 | rngabl | |
|
4 | 3 | 3ad2ant1 | |
5 | simp3 | |
|
6 | 2 | subgabl | |
7 | 4 5 6 | syl2anc | |
8 | eqid | |
|
9 | 8 | subg0cl | |
10 | 1 2 8 | rnglidlmsgrp | Could not format ( ( R e. Rng /\ U e. L /\ ( 0g ` R ) e. U ) -> ( mulGrp ` I ) e. Smgrp ) : No typesetting found for |- ( ( R e. Rng /\ U e. L /\ ( 0g ` R ) e. U ) -> ( mulGrp ` I ) e. Smgrp ) with typecode |- |
11 | 9 10 | syl3an3 | Could not format ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> ( mulGrp ` I ) e. Smgrp ) : No typesetting found for |- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> ( mulGrp ` I ) e. Smgrp ) with typecode |- |
12 | simpl1 | |
|
13 | 1 2 | lidlssbas | |
14 | 13 | sseld | |
15 | 13 | sseld | |
16 | 13 | sseld | |
17 | 14 15 16 | 3anim123d | |
18 | 17 | 3ad2ant2 | |
19 | 18 | imp | |
20 | eqid | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | 20 21 22 | rngdi | |
24 | 12 19 23 | syl2anc | |
25 | 20 21 22 | rngdir | |
26 | 12 19 25 | syl2anc | |
27 | 2 22 | ressmulr | |
28 | 27 | eqcomd | |
29 | eqidd | |
|
30 | 2 21 | ressplusg | |
31 | 30 | eqcomd | |
32 | 31 | oveqd | |
33 | 28 29 32 | oveq123d | |
34 | 28 | oveqd | |
35 | 28 | oveqd | |
36 | 31 34 35 | oveq123d | |
37 | 33 36 | eqeq12d | |
38 | 31 | oveqd | |
39 | eqidd | |
|
40 | 28 38 39 | oveq123d | |
41 | 28 | oveqd | |
42 | 31 35 41 | oveq123d | |
43 | 40 42 | eqeq12d | |
44 | 37 43 | anbi12d | |
45 | 44 | 3ad2ant2 | |
46 | 45 | adantr | |
47 | 24 26 46 | mpbir2and | |
48 | 47 | ralrimivvva | |
49 | eqid | |
|
50 | eqid | |
|
51 | eqid | |
|
52 | eqid | |
|
53 | 49 50 51 52 | isrng | Could not format ( I e. Rng <-> ( I e. Abel /\ ( mulGrp ` I ) e. Smgrp /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) ) : No typesetting found for |- ( I e. Rng <-> ( I e. Abel /\ ( mulGrp ` I ) e. Smgrp /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) ) with typecode |- |
54 | 7 11 48 53 | syl3anbrc | |