Metamath Proof Explorer


Theorem rnglidlrng

Description: A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020) Generalization for non-unital rings. The assumption U e. ( SubGrpR ) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025)

Ref Expression
Hypotheses rnglidlabl.l L=LIdealR
rnglidlabl.i I=R𝑠U
Assertion rnglidlrng RRngULUSubGrpRIRng

Proof

Step Hyp Ref Expression
1 rnglidlabl.l L=LIdealR
2 rnglidlabl.i I=R𝑠U
3 rngabl RRngRAbel
4 3 3ad2ant1 RRngULUSubGrpRRAbel
5 simp3 RRngULUSubGrpRUSubGrpR
6 2 subgabl RAbelUSubGrpRIAbel
7 4 5 6 syl2anc RRngULUSubGrpRIAbel
8 eqid 0R=0R
9 8 subg0cl USubGrpR0RU
10 1 2 8 rnglidlmsgrp Could not format ( ( R e. Rng /\ U e. L /\ ( 0g ` R ) e. U ) -> ( mulGrp ` I ) e. Smgrp ) : No typesetting found for |- ( ( R e. Rng /\ U e. L /\ ( 0g ` R ) e. U ) -> ( mulGrp ` I ) e. Smgrp ) with typecode |-
11 9 10 syl3an3 Could not format ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> ( mulGrp ` I ) e. Smgrp ) : No typesetting found for |- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> ( mulGrp ` I ) e. Smgrp ) with typecode |-
12 simpl1 RRngULUSubGrpRaBaseIbBaseIcBaseIRRng
13 1 2 lidlssbas ULBaseIBaseR
14 13 sseld ULaBaseIaBaseR
15 13 sseld ULbBaseIbBaseR
16 13 sseld ULcBaseIcBaseR
17 14 15 16 3anim123d ULaBaseIbBaseIcBaseIaBaseRbBaseRcBaseR
18 17 3ad2ant2 RRngULUSubGrpRaBaseIbBaseIcBaseIaBaseRbBaseRcBaseR
19 18 imp RRngULUSubGrpRaBaseIbBaseIcBaseIaBaseRbBaseRcBaseR
20 eqid BaseR=BaseR
21 eqid +R=+R
22 eqid R=R
23 20 21 22 rngdi RRngaBaseRbBaseRcBaseRaRb+Rc=aRb+RaRc
24 12 19 23 syl2anc RRngULUSubGrpRaBaseIbBaseIcBaseIaRb+Rc=aRb+RaRc
25 20 21 22 rngdir RRngaBaseRbBaseRcBaseRa+RbRc=aRc+RbRc
26 12 19 25 syl2anc RRngULUSubGrpRaBaseIbBaseIcBaseIa+RbRc=aRc+RbRc
27 2 22 ressmulr ULR=I
28 27 eqcomd ULI=R
29 eqidd ULa=a
30 2 21 ressplusg UL+R=+I
31 30 eqcomd UL+I=+R
32 31 oveqd ULb+Ic=b+Rc
33 28 29 32 oveq123d ULaIb+Ic=aRb+Rc
34 28 oveqd ULaIb=aRb
35 28 oveqd ULaIc=aRc
36 31 34 35 oveq123d ULaIb+IaIc=aRb+RaRc
37 33 36 eqeq12d ULaIb+Ic=aIb+IaIcaRb+Rc=aRb+RaRc
38 31 oveqd ULa+Ib=a+Rb
39 eqidd ULc=c
40 28 38 39 oveq123d ULa+IbIc=a+RbRc
41 28 oveqd ULbIc=bRc
42 31 35 41 oveq123d ULaIc+IbIc=aRc+RbRc
43 40 42 eqeq12d ULa+IbIc=aIc+IbIca+RbRc=aRc+RbRc
44 37 43 anbi12d ULaIb+Ic=aIb+IaIca+IbIc=aIc+IbIcaRb+Rc=aRb+RaRca+RbRc=aRc+RbRc
45 44 3ad2ant2 RRngULUSubGrpRaIb+Ic=aIb+IaIca+IbIc=aIc+IbIcaRb+Rc=aRb+RaRca+RbRc=aRc+RbRc
46 45 adantr RRngULUSubGrpRaBaseIbBaseIcBaseIaIb+Ic=aIb+IaIca+IbIc=aIc+IbIcaRb+Rc=aRb+RaRca+RbRc=aRc+RbRc
47 24 26 46 mpbir2and RRngULUSubGrpRaBaseIbBaseIcBaseIaIb+Ic=aIb+IaIca+IbIc=aIc+IbIc
48 47 ralrimivvva RRngULUSubGrpRaBaseIbBaseIcBaseIaIb+Ic=aIb+IaIca+IbIc=aIc+IbIc
49 eqid BaseI=BaseI
50 eqid mulGrpI=mulGrpI
51 eqid +I=+I
52 eqid I=I
53 49 50 51 52 isrng Could not format ( I e. Rng <-> ( I e. Abel /\ ( mulGrp ` I ) e. Smgrp /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) ) : No typesetting found for |- ( I e. Rng <-> ( I e. Abel /\ ( mulGrp ` I ) e. Smgrp /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) ) with typecode |-
54 7 11 48 53 syl3anbrc RRngULUSubGrpRIRng