| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnglidlabl.l |
|
| 2 |
|
rnglidlabl.i |
|
| 3 |
|
rngabl |
|
| 4 |
3
|
3ad2ant1 |
|
| 5 |
|
simp3 |
|
| 6 |
2
|
subgabl |
|
| 7 |
4 5 6
|
syl2anc |
|
| 8 |
|
eqid |
|
| 9 |
8
|
subg0cl |
|
| 10 |
1 2 8
|
rnglidlmsgrp |
|
| 11 |
9 10
|
syl3an3 |
|
| 12 |
|
simpl1 |
|
| 13 |
1 2
|
lidlssbas |
|
| 14 |
13
|
sseld |
|
| 15 |
13
|
sseld |
|
| 16 |
13
|
sseld |
|
| 17 |
14 15 16
|
3anim123d |
|
| 18 |
17
|
3ad2ant2 |
|
| 19 |
18
|
imp |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
20 21 22
|
rngdi |
|
| 24 |
12 19 23
|
syl2anc |
|
| 25 |
20 21 22
|
rngdir |
|
| 26 |
12 19 25
|
syl2anc |
|
| 27 |
2 22
|
ressmulr |
|
| 28 |
27
|
eqcomd |
|
| 29 |
|
eqidd |
|
| 30 |
2 21
|
ressplusg |
|
| 31 |
30
|
eqcomd |
|
| 32 |
31
|
oveqd |
|
| 33 |
28 29 32
|
oveq123d |
|
| 34 |
28
|
oveqd |
|
| 35 |
28
|
oveqd |
|
| 36 |
31 34 35
|
oveq123d |
|
| 37 |
33 36
|
eqeq12d |
|
| 38 |
31
|
oveqd |
|
| 39 |
|
eqidd |
|
| 40 |
28 38 39
|
oveq123d |
|
| 41 |
28
|
oveqd |
|
| 42 |
31 35 41
|
oveq123d |
|
| 43 |
40 42
|
eqeq12d |
|
| 44 |
37 43
|
anbi12d |
|
| 45 |
44
|
3ad2ant2 |
|
| 46 |
45
|
adantr |
|
| 47 |
24 26 46
|
mpbir2and |
|
| 48 |
47
|
ralrimivvva |
|
| 49 |
|
eqid |
|
| 50 |
|
eqid |
|
| 51 |
|
eqid |
|
| 52 |
|
eqid |
|
| 53 |
49 50 51 52
|
isrng |
|
| 54 |
7 11 48 53
|
syl3anbrc |
|